
fklearn Documentation
Release 3.0.0

Nubank Data Science Team

Nov 09, 2023

Contents

1 Contents 3

Python Module Index 71

Index 73

i

ii

fklearn Documentation, Release 3.0.0

fklearn uses functional programming principles to make it easier to solve real problems with Machine Learning.

The name is a reference to the widely known scikit-learn library.

fklearn Principles

1. Validation should reflect real-life situations.

2. Production models should match validated models.

3. Models should be production-ready with few extra steps.

4. Reproducibility and in-depth analysis of model results should be easy to achieve.

Contents 1

https://scikit-learn.org/stable/

fklearn Documentation, Release 3.0.0

2 Contents

CHAPTER 1

Contents

1.1 Getting started

1.1.1 Installation

The fklearn library is compatible only with Python 3.6.2+. In order to install it using pip, run:

pip install fklearn

You can also install it from the source:

clone the repository
git clone -b master https://github.com/nubank/fklearn.git --depth=1

open the folder
cd fklearn

install the dependencies
pip install -e .

If you are a macOS user, you may need to install some dependencies in order to use LGBM. If you have brew installed,
run the following command from the root dir:

brew bundle

1.1.2 Basics

Learners

While in scikit-learn the main abstraction for a model is a class with the methods fit and transform, in fklearn
we use what we call a learner function. A learner function takes in some training data (plus other parameters), learns
something from it and returns three things: a prediction function, the transformed training data, and a log.

3

fklearn Documentation, Release 3.0.0

The prediction function always has the same signature: it takes in a Pandas dataframe and returns a Pandas dataframe.
It should be able to take in any new dataframe, as long as it contains the required columns, and transform it. The
tranform in the fklearn library is equivalent to the transform method of the scikit-learn. In this case, the prediction
function simply creates a new column with the predictions of the linear regression model that was trained.

The transformed training data is usually just the prediction function applied to the training data. It is useful when
you want predictions on your training set, or for building pipelines, as we’ll see later.

The log is a dictionary, and can include any information that is relevant for inspecting or debugging the learner, e.g.,
what features were used, how many samples there were in the training set, feature importance or coefficients.

Learner functions are usually partially initialized (curried) before being passed to pipelines or applied to data:

from fklearn.training.regression import linear_regression_learner
from fklearn.training.transformation import capper, floorer, prediction_ranger

initialize several learner functions
capper_fn = capper(columns_to_cap=["income"], precomputed_caps={"income": 50000})
regression_fn = linear_regression_learner(features=["income", "bill_amount"], target=
→˓"spend")
ranger_fn = prediction_ranger(prediction_min=0.0, prediction_max=20000.0)

apply one individually to some data
p, df, log = regression_fn(training_data)

Available learner functions in fklearn can be found inside the fklearn.training module.

Pipelines

Learner functions are usually composed into pipelines that apply them in order to data:

from fklearn.training.pipeline import build_pipeline

learner = build_pipeline(capper_fn, regression_fn, ranger_fn)
predict_fn, training_predictions, logs = learner(train_data)

Pipelines behave exactly as individual learner functions. They guarantee that all steps are applied consistently to both
traning and testing/production data.

Validation

Once we have our pipeline defined, we can use fklearn’s validation tools to evaluate the performance of our model in
different scenarios and using multiple metrics:

from fklearn.validation.evaluators import r2_evaluator, spearman_evaluator, combined_
→˓evaluators
from fklearn.validation.validator import validator
from fklearn.validation.splitters import k_fold_splitter, stability_curve_time_
→˓splitter

evaluation_fn = combined_evaluators(evaluators=[r2_evaluator(target_column="spend"),
spearman_evaluator(target_column=

→˓"spend")])

cv_split_fn = k_fold_splitter(n_splits=3, random_state=42)
stability_split_fn = stability_curve_time_splitter(training_time_limit=pd.to_datetime(
→˓"2018-01-01"),

(continues on next page)

4 Chapter 1. Contents

fklearn Documentation, Release 3.0.0

(continued from previous page)

time_column="timestamp")

cross_validation_results = validator(train_data=train_data,
split_fn=cv_split_fn,
train_fn=learner,
eval_fn=evaluation_fn)

stability_validation_results = validator(train_data=train_data,
split_fn=stability_split_fn,
train_fn=learner,
eval_fn=evaluation_fn)

The validator function receives some data, the learner function with our model plus the following: 1. A
splitting function: these can be found inside the fklearn.validation.splitters module. They split the
data into training and evaluation folds in different ways, simulating situations where training and testing data dif-
fer. 2. A evaluation function: these can be found inside the fklearn.validation.evaluators module.
They compute various performance metrics of interest on our model’s predictions. They can be composed by using
combined_evaluators for example.

1.1.3 Learn More

• Check this jupyter notebook for some additional examples.

• Our blog post (Part I) gives an overview of the library and motivation behind it.

1.2 Examples

In this section we present practical examples to demonstrate various fklearn features.

1.2.1 List of examples

• learning_curves

• nlp_classification

• regression

• causal_inference

• feature_transformation

• fklearn_overview

• fklearn_overview_dataset_generation

1.3 fklearn

1.3.1 fklearn package

Subpackages

1.2. Examples 5

https://github.com/nubank/fklearn/blob/master/docs/source/examples/regression.ipynb
https://medium.com/building-nubank/introducing-fklearn-nubanks-machine-learning-library-part-i-2a1c781035d0

fklearn Documentation, Release 3.0.0

fklearn.causal package

Subpackages

fklearn.causal.validation package

Submodules

fklearn.causal.validation.auc module

fklearn.causal.validation.auc.area_under_the_cumulative_effect_curve
Orders the dataset by prediction and computes the area under the cumulative effect curve, according to that
ordering.

Parameters

• df (Pandas' DataFrame) – A Pandas’ DataFrame with target and prediction scores.

• treatment (str) – The name of the treatment column in df.

• outcome (Strings) – The name of the outcome column in df.

• prediction (Strings) – The name of the prediction column in df.

• min_rows (int) – Minimum number of observations needed to have a valid result.

• steps (Integer) – The number of cumulative steps to iterate when accumulating the
effect

• effect_fn (function (df: pandas.DataFrame, treatment: str,
outcome: str) -> int or Array of int) – A function that computes the
treatment effect given a dataframe, the name of the treatment column and the name of the
outcome column.

Returns area_under_the_cumulative_gain_curve – The area under the cumulative gain curve ac-
cording to the predictions ordering.

Return type float

fklearn.causal.validation.auc.area_under_the_cumulative_gain_curve
Orders the dataset by prediction and computes the area under the cumulative gain curve, according to that
ordering.

Parameters

• df (Pandas' DataFrame) – A Pandas’ DataFrame with target and prediction scores.

• treatment (Strings) – The name of the treatment column in df.

• outcome (Strings) – The name of the outcome column in df.

• prediction (Strings) – The name of the prediction column in df.

• min_rows (Integer) – Minimum number of observations needed to have a valid result.

• steps (Integer) – The number of cumulative steps to iterate when accumulating the
effect

• effect_fn (function (df: pandas.DataFrame, treatment: str,
outcome: str) -> int or Array of int) – A function that computes the
treatment effect given a dataframe, the name of the treatment column and the name of the
outcome column.

6 Chapter 1. Contents

fklearn Documentation, Release 3.0.0

Returns area_under_the_cumulative_gain_curve – The area under the cumulative gain curve ac-
cording to the predictions ordering.

Return type float

fklearn.causal.validation.auc.area_under_the_relative_cumulative_gain_curve

Orders the dataset by prediction and computes the area under the relative cumulative gain curve, according to that
ordering.

Parameters

• df (Pandas' DataFrame) – A Pandas’ DataFrame with target and prediction scores.

• treatment (Strings) – The name of the treatment column in df.

• outcome (Strings) – The name of the outcome column in df.

• prediction (Strings) – The name of the prediction column in df.

• min_rows (Integer) – Minimum number of observations needed to have a valid result.

• steps (Integer) – The number of cumulative steps to iterate when accumulating the
effect

• effect_fn (function (df: pandas.DataFrame, treatment: str,
outcome: str) -> int or Array of int) – A function that computes the
treatment effect given a dataframe, the name of the treatment column and the name of the
outcome column.

Returns area under the relative cumulative gain curve – The area under the relative cumulative
gain curve according to the predictions ordering.

Return type float

fklearn.causal.validation.cate module

fklearn.causal.validation.cate.cate_mean_by_bin(test_data: pan-
das.core.frame.DataFrame,
group_column: str, con-
trol_group_name: str, bin_column:
str, n_bins: int, allow_dropped_bins:
bool, prediction_column: str,
target_column: str) → pan-
das.core.frame.DataFrame

Computes a dataframe with predicted and actual CATEs by bins of a given column.

This is primarily an auxiliary function, but can be used to visualize the CATEs.

Parameters

• test_data (DataFrame) – A Pandas’ DataFrame with group_column as a column.

• group_column (str) – The name of the column that tells whether rows belong to the
test or control group.

• control_group_name (str) – The name of the control group.

• bin_column (str) – The name of the column from which the quantiles will be created.

• n_bins (str) – The number of bins to be created.

1.3. fklearn 7

fklearn Documentation, Release 3.0.0

• allow_dropped_bins (bool) – Whether to allow the function to drop duplicated quan-
tiles.

• prediction_column (str) – The name of the column containing the predictions from
the model being evaluated.

• target_column (str) – The name of the column containing the actual outcomes of the
treatment.

Returns gb – The grouped dataframe with actual and predicted CATEs by bin.

Return type DataFrame

fklearn.causal.validation.cate.cate_mean_by_bin_meta_evaluator
Evaluates the predictions of a causal model that outputs treatment outcomes w.r.t. its capabilities to predict the
CATE.

Due to the fundamental lack of counterfactual data, the CATEs are computed for bins of a given column. This
function then applies a fklearn-like evaluator on top of the aggregated dataframe.

Parameters

• test_data (DataFrame) – A Pandas’ DataFrame with group_column as a column.

• group_column (str) – The name of the column that tells whether rows belong to the
test or control group.

• control_group_name (str) – The name of the control group.

• bin_column (str) – The name of the column from which the quantiles will be created.

• n_bins (str) – The number of bins to be created.

• allow_dropped_bins (bool, optional (default=False)) – Whether to al-
low the function to drop duplicated quantiles.

• inner_evaluator (UncurriedEvalFnType, optional
(default=r2_evaluator)) – An instance of a fklearn-like evaluator, which
will be applied to the .

• eval_name (str, optional (default=None)) – The name of the evaluator as it
will appear in the logs.

• prediction_column (str, optional (default=None)) – The name of the
column containing the predictions from the model being evaluated.

• target_column (str, optional (default=None)) – The name of the column
containing the actual outcomes of the treatment.

Returns log – A log-like dictionary with the evaluation by inner_evaluator

Return type dict

fklearn.causal.validation.curves module

fklearn.causal.validation.curves.cumulative_effect_curve
Orders the dataset by prediction and computes the cumulative effect curve according to that ordering

Parameters

• df (Pandas' DataFrame) – A Pandas’ DataFrame with target and prediction scores.

• treatment (Strings) – The name of the treatment column in df.

8 Chapter 1. Contents

fklearn Documentation, Release 3.0.0

• outcome (Strings) – The name of the outcome column in df.

• prediction (Strings) – The name of the prediction column in df.

• min_rows (Integer) – Minimum number of observations needed to have a valid result.

• steps (Integer) – The number of cumulative steps to iterate when accumulating the
effect

• effect_fn (function (df: pandas.DataFrame, treatment: str,
outcome: str) -> int or Array of int) – A function that computes the
treatment effect given a dataframe, the name of the treatment column and the name of the
outcome column.

Returns cumulative effect curve – The cumulative treatment effect according to the predictions
ordering.

Return type Numpy’s Array

fklearn.causal.validation.curves.cumulative_gain_curve

Orders the dataset by prediction and computes the cumulative gain (effect * proportional sample size) curve
according to that ordering.

Parameters

• df (Pandas' DataFrame) – A Pandas’ DataFrame with target and prediction scores.

• treatment (Strings) – The name of the treatment column in df.

• outcome (Strings) – The name of the outcome column in df.

• prediction (Strings) – The name of the prediction column in df.

• min_rows (Integer) – Minimum number of observations needed to have a valid result.

• steps (Integer) – The number of cumulative steps to iterate when accumulating the
effect

• effect_fn (function (df: pandas.DataFrame, treatment: str,
outcome: str) -> int or Array of int) – A function that computes the
treatment effect given a dataframe, the name of the treatment column and the name of the
outcome column.

Returns cumulative gain curve – The cumulative gain according to the predictions ordering.

Return type float

fklearn.causal.validation.curves.effect_by_segment
Segments the dataset by a prediction’s quantile and estimates the treatment effect by segment.

Parameters

• df (Pandas' DataFrame) – A Pandas’ DataFrame with target and prediction scores.

• treatment (Strings) – The name of the treatment column in df.

• outcome (Strings) – The name of the outcome column in df.

• prediction (Strings) – The name of the prediction column in df.

• segments (Integer) – The number of the segments to create. Uses Pandas’ qcut under
the hood.

1.3. fklearn 9

fklearn Documentation, Release 3.0.0

• effect_fn (function (df: pandas.DataFrame, treatment: str,
outcome: str) -> int or Array of int) – A function that computes the
treatment effect given a dataframe, the name of the treatment column and the name of the
outcome column.

Returns effect by band – The effect stored in a Pandas’ series were the indexes are the segments

Return type Pandas’ Series

fklearn.causal.validation.curves.effect_curves
cumulative effect, cumulative gain and relative cumulative gain. The dataset also contains two columns ref-
erencing the data used to compute the curves at each step: number of samples and fraction of samples used.
Moreover one column indicating the cumulative gain for a corresponding random model is also included as a
benchmark.

Parameters

• df (Pandas' DataFrame) – A Pandas’ DataFrame with target and prediction scores.

• treatment (Strings) – The name of the treatment column in df.

• outcome (Strings) – The name of the outcome column in df.

• prediction (Strings) – The name of the prediction column in df.

• min_rows (Integer) – Minimum number of observations needed to have a valid result.

• steps (Integer) – The number of cumulative steps to iterate when accumulating the
effect

• effect_fn (function (df: pandas.DataFrame, treatment: str,
outcome: str) -> int or Array of int) – A function that computes the
treatment effect given a dataframe, the name of the treatment column and the name of the
outcome column.

Returns summary curves dataset – The dataset with the results for multiple validation causal
curves according to the predictions ordering.

Return type pd.DataFrame

Type Creates a dataset summarizing the effect curves

fklearn.causal.validation.curves.relative_cumulative_gain_curve
Orders the dataset by prediction and computes the relative cumulative gain curve curve according to that or-
dering. The relative gain is simply the cumulative effect minus the Average Treatment Effect (ATE) times the
relative sample size.

Parameters

• df (Pandas' DataFrame) – A Pandas’ DataFrame with target and prediction scores.

• treatment (Strings) – The name of the treatment column in df.

• outcome (Strings) – The name of the outcome column in df.

• prediction (Strings) – The name of the prediction column in df.

• min_rows (Integer) – Minimum number of observations needed to have a valid result.

• steps (Integer) – The number of cumulative steps to iterate when accumulating the
effect

• effect_fn (function (df: pandas.DataFrame, treatment: str,
outcome: str) -> int or Array of int) – A function that computes the

10 Chapter 1. Contents

fklearn Documentation, Release 3.0.0

treatment effect given a dataframe, the name of the treatment column and the name of the
outcome column.

Returns relative cumulative gain curve – The relative cumulative gain according to the predictions
ordering.

Return type float

Module contents

Submodules

fklearn.causal.debias module

fklearn.causal.debias.debias_with_double_ml
Frisch-Waugh-Lovell style debiasing with ML model. To debias, we

1) fit a regression ml model to predict the treatment from the confounders and take out of fold
residuals from

this fit (debias step)

2) fit a regression ml model to predict the outcome from the confounders and take the out of fold
residuals from

this fit (denoise step).

We then add back the average outcome and treatment so that their levels remain unchanged.

Returns a dataframe with the debiased columns with suffix appended to the name

Parameters

• df (Pandas DataFrame) – A Pandas’ DataFrame with with treatment, outcome and
confounder columns

• treatment_column (str) – The name of the column in df with the treatment.

• outcome_column (str) – The name of the column in df with the outcome.

• confounder_columns (list of str) – A list of confounder present in df

• ml_regressor (Sklearn's RegressorMixin) – A regressor model that imple-
ments a fit and a predict method

• extra_params (dict) – The hyper-parameters for the model

• cv (int) – The number of folds to cross predict

• suffix (str) – A suffix to append to the returning debiased column names.

• denoise (bool (Default=True)) – If it should denoise the outcome using the con-
founders or not

• seed (int) – A seed for consistency in random computation

Returns debiased_df – The original df dataframe with debiased columns added.

Return type Pandas DataFrame

1.3. fklearn 11

fklearn Documentation, Release 3.0.0

fklearn.causal.debias.debias_with_fixed_effects
Returns a dataframe with the debiased columns with suffix appended to the name

This is equivalent of debiasing with regression where the forumla is “C(x1) + C(x2) + . . . ”. However, it is much
more eficient than runing such a dummy variable regression.

Parameters

• df (Pandas DataFrame) – A Pandas’ DataFrame with with treatment, outcome and
confounder columns

• treatment_column (str) – The name of the column in df with the treatment.

• outcome_column (str) – The name of the column in df with the outcome.

• confounder_columns (list of str) – Confounders are categorical groups we
wish to explain away. Some examples are units (ex: customers), and time (day, months. . .).
We perform a group by on these columns, so they should not be continuous variables.

• suffix (str) – A suffix to append to the returning debiased column names.

• denoise (bool (Default=True)) – If it should denoise the outcome using the con-
founders or not

Returns debiased_df – The original df dataframe with debiased columns added.

Return type Pandas DataFrame

fklearn.causal.debias.debias_with_regression
Frisch-Waugh-Lovell style debiasing with linear regression. To debias, we

1) fit a linear model to predict the treatment from the confounders and take the residuals from this fit
(debias step) 2) fit a linear model to predict the outcome from the confounders and take the residuals
from this fit (denoise step).

We then add back the average outcome and treatment so that their levels remain unchanged.

Returns a dataframe with the debiased columns with suffix appended to the name

Parameters

• df (Pandas DataFrame) – A Pandas’ DataFrame with with treatment, outcome and
confounder columns

• treatment_column (str) – The name of the column in df with the treatment.

• outcome_column (str) – The name of the column in df with the outcome.

• confounder_columns (list of str) – A list of confounder present in df

• suffix (str) – A suffix to append to the returning debiased column names.

• denoise (bool (Default=True)) – If it should denoise the outcome using the con-
founders or not

Returns debiased_df – The original df dataframe with debiased columns added.

Return type Pandas DataFrame

fklearn.causal.debias.debias_with_regression_formula
Frisch-Waugh-Lovell style debiasing with linear regression. With R formula to define confounders. To debias,
we

1) fit a linear model to predict the treatment from the confounders and take the residuals from this fit
(debias step) 2) fit a linear model to predict the outcome from the confounders and take the residuals
from this fit (denoise step).

12 Chapter 1. Contents

fklearn Documentation, Release 3.0.0

We then add back the average outcome and treatment so that their levels remain unchanged.

Returns a dataframe with the debiased columns with suffix appended to the name

Parameters

• df (Pandas DataFrame) – A Pandas’ DataFrame with with treatment, outcome and
confounder columns

• treatment_column (str) – The name of the column in df with the treatment.

• outcome_column (str) – The name of the column in df with the outcome.

• confounder_formula (str) – An R formula modeling the confounders. Check https:
//www.statsmodels.org/dev/example_formulas.html for examples.

• suffix (str) – A suffix to append to the returning debiased column names.

• denoise (bool (Default=True)) – If it should denoise the outcome using the con-
founders or not

Returns debiased_df – The original df dataframe with debiased columns added.

Return type Pandas DataFrame

fklearn.causal.effects module

fklearn.causal.effects.exponential_coefficient_effect
Computes the exponential coefficient between the treatment and the outcome. Finds a1 in the following equation
outcome = exp(a0 + a1 treatment) + error

Parameters

• df (Pandas' DataFrame) – A Pandas’ DataFrame with target and prediction scores.

• treatment_column (str) – The name of the treatment column in df.

• outcome_column (str) – The name of the outcome column in df.

Returns effect – The exponential coefficient between the treatment and the outcome

Return type float

fklearn.causal.effects.linear_effect
cov(outcome, treatment)/var(treatment)

Parameters

• df (Pandas' DataFrame) – A Pandas’ DataFrame with target and prediction scores.

• treatment_column (str) – The name of the treatment column in df.

• outcome_column (str) – The name of the outcome column in df.

Returns effect – The linear coefficient from regressing the outcome on the treatment: cov(outcome,
treatment)/var(treatment)

Return type float

Type Computes the linear coefficient from regressing the outcome on the treatment

fklearn.causal.effects.logistic_coefficient_effect
Computes the logistic coefficient between the treatment and the outcome. Finds a1 in the following equation
outcome = logistic(a0 + a1 treatment)

Parameters

1.3. fklearn 13

https://www.statsmodels.org/dev/example_formulas.html
https://www.statsmodels.org/dev/example_formulas.html

fklearn Documentation, Release 3.0.0

• df (Pandas' DataFrame) – A Pandas’ DataFrame with target and prediction scores.

• treatment_column (str) – The name of the treatment column in df.

• outcome_column (str) – The name of the outcome column in df.

Returns effect – The logistic coefficient between the treatment and the outcome

Return type float

fklearn.causal.effects.pearson_effect
Computes the Pearson correlation between the treatment and the outcome

Parameters

• df (Pandas' DataFrame) – A Pandas’ DataFrame with target and prediction scores.

• treatment_column (str) – The name of the treatment column in df.

• outcome_column (str) – The name of the outcome column in df.

Returns effect – The Pearson correlation between the treatment and the outcome

Return type float

fklearn.causal.effects.spearman_effect
Computes the Spearman correlation between the treatment and the outcome

Parameters

• df (Pandas' DataFrame) – A Pandas’ DataFrame with target and prediction scores.

• treatment_column (str) – The name of the treatment column in df.

• outcome_column (str) – The name of the outcome column in df.

Returns effect – The Spearman correlation between the treatment and the outcome

Return type float

Module contents

fklearn.data package

Submodules

fklearn.data.datasets module

fklearn.data.datasets.make_confounded_data(n: int) → Tu-
ple[pandas.core.frame.DataFrame,
pandas.core.frame.DataFrame, pan-
das.core.frame.DataFrame]

Generates fake data for counterfactual experimentation. The covariants are sex, age and severity, the treatment
is a binary variable, medication and the response days until recovery.

Parameters n (int) – The number of samples to generate

Returns

• df_rnd (pd.DataFrame) – A dataframe where the treatment is randomly assigned.

• df_obs (pd.DataFrame) – A dataframe with confounding.

14 Chapter 1. Contents

fklearn Documentation, Release 3.0.0

• df_df (pd.DataFrame) – A counter factual dataframe with confounding. Same as df_obs,
but with the treatment flipped.

fklearn.data.datasets.make_tutorial_data(n: int)→ pandas.core.frame.DataFrame
Generates fake data for a tutorial. There are 3 numerical features (“num1”, “num3” and “num3”) and tow
categorical features (“cat1” and “cat2”) sex, age and severity, the treatment is a binary variable, medication and
the response days until recovery.

Parameters n (int) – The number of samples to generate

Returns df – A tutorial dataset

Return type pd.DataFrame

Module contents

fklearn.metrics package

Submodules

fklearn.metrics.pd_extractors module

fklearn.metrics.pd_extractors.combined_evaluator_extractor

fklearn.metrics.pd_extractors.evaluator_extractor

fklearn.metrics.pd_extractors.extract

fklearn.metrics.pd_extractors.extract_base_iteration

fklearn.metrics.pd_extractors.extract_lc

fklearn.metrics.pd_extractors.extract_param_tuning_iteration

fklearn.metrics.pd_extractors.extract_reverse_lc

fklearn.metrics.pd_extractors.extract_sc

fklearn.metrics.pd_extractors.extract_tuning

fklearn.metrics.pd_extractors.learning_curve_evaluator_extractor

fklearn.metrics.pd_extractors.permutation_extractor

fklearn.metrics.pd_extractors.repeat_split_log

fklearn.metrics.pd_extractors.reverse_learning_curve_evaluator_extractor

fklearn.metrics.pd_extractors.split_evaluator_extractor

fklearn.metrics.pd_extractors.split_evaluator_extractor_iteration

fklearn.metrics.pd_extractors.stability_curve_evaluator_extractor

fklearn.metrics.pd_extractors.temporal_split_evaluator_extractor

Module contents

fklearn.preprocessing package

1.3. fklearn 15

fklearn Documentation, Release 3.0.0

Submodules

fklearn.preprocessing.rebalancing module

fklearn.preprocessing.rebalancing.rebalance_by_categorical
Resample dataset so that the result contains the same number of lines per category in categ_column.

Parameters

• dataset (pandas.DataFrame) – A Pandas’ DataFrame with an categ_column column

• categ_column (str) – The name of the categorical column

• max_lines_by_categ (int (default None)) – The maximum number of lines
by category. If None it will be set to the number of lines for the smallest category

• seed (int (default 1)) – Random state for consistency.

Returns rebalanced_dataset – A dataset with fewer lines than dataset, but with the same number
of lines per category in categ_column

Return type pandas.DataFrame

fklearn.preprocessing.rebalancing.rebalance_by_continuous
Resample dataset so that the result contains the same number of lines per bucket in a continuous column.

Parameters

• dataset (pandas.DataFrame) – A Pandas’ DataFrame with an categ_column column

• continuous_column (str) – The name of the continuous column

• buckets (int) – The number of buckets to split the continuous column into

• max_lines_by_categ (int (default None)) – The maximum number of lines
by category. If None it will be set to the number of lines for the smallest category

• by_quantile (bool (default False)) – If True, uses pd.qcut instead of pd.cut to
get the buckets from the continuous column

• seed (int (default 1)) – Random state for consistency.

Returns rebalanced_dataset – A dataset with fewer lines than dataset, but with the same number
of lines per category in categ_column

Return type pandas.DataFrame

fklearn.preprocessing.schema module

fklearn.preprocessing.schema.column_duplicatable(columns_to_bind: str)→ Callable
Decorator to prepend the feature_duplicator learner.

Identifies the columns to be duplicated and applies duplicator.

Parameters columns_to_bind (str) – Sets feature_duplicator’s “columns_to_duplicate” pa-
rameter equal to the columns_to_bind parameter from the decorated learner

fklearn.preprocessing.schema.feature_duplicator
Duplicates some columns in the dataframe.

When encoding features, a good practice is to save the encoded version in a different column rather than re-
placing the original values. The purpose of this function is to duplicate the column to be encoded, to be later
replaced by the encoded values.

16 Chapter 1. Contents

fklearn Documentation, Release 3.0.0

The duplication method is used to preserve the original behaviour (replace).

Parameters

• df (pandas.DataFrame) – A Pandas’ DataFrame with columns_to_duplicate columns

• columns_to_duplicate (list of str) – List of columns names

• columns_mapping (int (default None)) – Mapping of source columns to desti-
nation columns

• prefix (int (default None)) – prefix to add to columns to duplicate

• suffix (int (default None)) – Suffix to add to columns to duplicate

Returns increased_dataset – A dataset with repeated columns

Return type pandas.DataFrame

fklearn.preprocessing.splitting module

fklearn.preprocessing.splitting.space_time_split_dataset
Splits panel data using both ID and Time columns, resulting in four datasets

1. A training set;

2. An in training time, but out sample id hold out dataset;

3. An out of training time, but in sample id hold out dataset;

4. An out of training time and out of sample id hold out dataset.

Parameters

• dataset (pandas.DataFrame) – A Pandas’ DataFrame with an Identifier Column and
a Date Column. The model will be trained to predict the target column from the features.

• train_start_date (str) – A date string representing a the starting time of the training
data. It should be in the same format as the Date Column in dataset.

• train_end_date (str) – A date string representing a the ending time of the training
data. This will also be used as the start date of the holdout period if no holdout_start_date
is given. It should be in the same format as the Date Column in dataset.

• holdout_end_date (str) – A date string representing a the ending time of the holdout
data. It should be in the same format as the Date Column in dataset.

• split_seed (int) – A seed used by the random number generator.

• space_holdout_percentage (float) – The out of id holdout size as a proportion
of the in id training size.

• space_column (str) – The name of the Identifier column of dataset.

• time_column (str) – The name of the Date column of dataset.

• holdout_space (np.array) – An array containing the hold out IDs. If not specified,
A random subset of IDs will be selected for holdout.

• holdout_start_date (str) – A date string representing the starting time of the hold-
out data. If None is given it will be equal to train_end_date. It should be in the same format
as the Date Column in dataset.

Returns

1.3. fklearn 17

fklearn Documentation, Release 3.0.0

• train_set (pandas.DataFrame) – The in ID sample and in time training set.

• intime_outspace_hdout (pandas.DataFrame) – The out of ID sample and in time hold out
set.

• outime_inspace_hdout (pandas.DataFrame) – The in ID sample and out of time hold out
set.

• outime_outspace_hdout (pandas.DataFrame) – The out of ID sample and out of time hold
out set.

fklearn.preprocessing.splitting.stratified_split_dataset
Splits data into a training and testing datasets such that they maintain the same class ratio of the original dataset.

Parameters

• dataset (pandas.DataFrame) – A Pandas’ DataFrame with the target column. The
model will be trained to predict the target column from the features.

• target_column (str) – The name of the target column of dataset.

• test_size (float) – Represent the proportion of the dataset to include in the test split.
should be between 0.0 and 1.0.

• random_state (int or None, optional (default=None)) – If int, ran-
dom_state is the seed used by the random number generator; If None, the random number
generator is the RandomState instance used by np.random.

Returns

• train_set (pandas.DataFrame) – The train dataset sampled from the full dataset.

• test_set (pandas.DataFrame) – The test dataset sampled from the full dataset.

fklearn.preprocessing.splitting.time_split_dataset
Splits temporal data into a training and testing datasets such that all training data comes before the testings one.

Parameters

• dataset (pandas.DataFrame) – A Pandas’ DataFrame with an Identifier Column and
a Date Column. The model will be trained to predict the target column from the features.

• train_start_date (str) – A date string representing a the starting time of the training
data. It should be in the same format as the Date Column in dataset.

• train_end_date (str) – A date string representing a the ending time of the training
data. This will also be used as the start date of the holdout period if no holdout_start_date
is given. It should be in the same format as the Date Column in dataset.

• holdout_end_date (str) – A date string representing a the ending time of the holdout
data. It should be in the same format as the Date Column in dataset.

• time_column (str) – The name of the Date column of dataset.

• holdout_start_date (str) – A date string representing the starting time of the hold-
out data. If None is given it will be equal to train_end_date. It should be in the same format
as the Date Column in dataset.

Returns

• train_set (pandas.DataFrame) – The in ID sample and in time training set.

• test_set (pandas.DataFrame) – The out of ID sample and in time hold out set.

18 Chapter 1. Contents

fklearn Documentation, Release 3.0.0

Module contents

fklearn.training package

Submodules

fklearn.training.calibration module

fklearn.training.calibration.find_thresholds_with_same_risk
Calculate fair calibration, where for each band any sensitive factor group have the same target mean.

Parameters

• df (pandas.DataFrame) – A Pandas’ DataFrame with features and target columns. The
model will be trained to predict the target column from the features.

• sensitive_factor (str) – Column where we have the different group classifications
that we want to have the same target mean

• unfair_band_column (str) – Column with the original bands

• model_prediction_output (str) – Risk model’s output

• target_column (str) – The name of the column in df that should be used as target for
the model. This column should be binary, since this is a classification model.

• output_column_name (str) – The name of the column with the fair bins.

Returns

• p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a
DataFrame with the same columns as df returns a new DataFrame with a new column with
predictions from the model.

• new_df (pandas.DataFrame) – A df -like DataFrame with the same columns as the input df
plus a column with predictions from the model.

• log (dict) – A log-like Dict that stores information of the find_thresholds_with_same_risk
model.

fklearn.training.calibration.isotonic_calibration_learner
Fits a single feature isotonic regression to the dataset.

Parameters

• df (pandas.DataFrame) – A Pandas’ DataFrame with features and target columns. The
model will be trained to predict the target column from the features.

• target_column (str) – The name of the column in df that should be used as target for
the model. This column should be binary, since this is a classification model.

• prediction_column (str) – The name of the column with the uncalibrated predictions
from the model.

• output_column (str) – The name of the column with the calibrated predictions from
the model.

• y_min (float) – Lower bound of Isotonic Regression

• y_max (float) – Upper bound of Isotonic Regression

Returns

1.3. fklearn 19

fklearn Documentation, Release 3.0.0

• p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a
DataFrame with the same columns as df returns a new DataFrame with a new column with
predictions from the model.

• new_df (pandas.DataFrame) – A df -like DataFrame with the same columns as the input df
plus a column with predictions from the model.

• log (dict) – A log-like Dict that stores information of the Isotonic Calibration model.

fklearn.training.classification module

fklearn.training.classification.catboost_classification_learner
Fits an CatBoost classifier to the dataset. It first generates a DMatrix with the specified features and labels from
df. Then, it fits a CatBoost model to this DMatrix. Return the predict function for the model and the predictions
for the input dataset.

Parameters

• df (pandas.DataFrame) – A Pandas’ DataFrame with features and target columns. The
model will be trained to predict the target column from the features.

• features (list of str) – A list os column names that are used as features for the
model. All this names should be in df.

• target (str) – The name of the column in df that should be used as target for the model.
This column should be discrete, since this is a classification model.

• learning_rate (float) – Float in the range (0, 1] Step size shrinkage used in update
to prevents overfitting. After each boosting step, we can directly get the weights of new fea-
tures. and eta actually shrinks the feature weights to make the boosting process more conser-
vative. See the eta hyper-parameter in: https://catboost.ai/docs/concepts/python-reference_
parameters-list.html

• num_estimators (int) – Int in the range (0, inf) Number of boosted trees to fit. See
the n_estimators hyper-parameter in: https://catboost.ai/docs/concepts/python-reference_
parameters-list.html

• extra_params (dict, optional) – Dictionary in the format {“hyperparame-
ter_name” : hyperparameter_value}. Other parameters for the CatBoost model. See the list
in: https://catboost.ai/docs/concepts/python-reference_catboostregressor.html If not passed,
the default will be used.

• prediction_column (str) – The name of the column with the predictions from the
model. If a multiclass problem, additional prediction_column_i columns will be added for i
in range(0,n_classes).

• weight_column (str, optional) – The name of the column with scores to weight
the data.

• encode_extra_cols (bool (default: True)) – If True, treats all columns in df
with name pattern fklearn_feat__col==val‘ as feature columns.

Returns

• p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a
DataFrame with the same columns as df returns a new DataFrame with a new column with
predictions from the model.

• new_df (pandas.DataFrame) – A df -like DataFrame with the same columns as the input df
plus a column with predictions from the model.

20 Chapter 1. Contents

https://catboost.ai/docs/concepts/python-reference_parameters-list.html
https://catboost.ai/docs/concepts/python-reference_parameters-list.html
https://catboost.ai/docs/concepts/python-reference_parameters-list.html
https://catboost.ai/docs/concepts/python-reference_parameters-list.html
https://catboost.ai/docs/concepts/python-reference_catboostregressor.html

fklearn Documentation, Release 3.0.0

• log (dict) – A log-like Dict that stores information of the catboost_classification_learner
model.

fklearn.training.classification.lgbm_classification_learner
Fits an LGBM classifier to the dataset.

It first generates a Dataset with the specified features and labels from df. Then, it fits a LGBM model to this
Dataset. Return the predict function for the model and the predictions for the input dataset.

Parameters

• df (pandas.DataFrame) – A pandas DataFrame with features and target columns. The
model will be trained to predict the target column from the features.

• features (list of str) – A list os column names that are used as features for the
model. All this names should be in df.

• target (str) – The name of the column in df that should be used as target for the model.
This column should be discrete, since this is a classification model.

• learning_rate (float) – Float in the range (0, 1] Step size shrinkage used in up-
date to prevents overfitting. After each boosting step, we can directly get the weights of
new features. and eta actually shrinks the feature weights to make the boosting process
more conservative. See the learning_rate hyper-parameter in: https://github.com/Microsoft/
LightGBM/blob/master/docs/Parameters.rst

• num_estimators (int) – Int in the range (0, inf) Number of boosted trees to fit. See the
num_iterations hyper-parameter in: https://github.com/Microsoft/LightGBM/blob/master/
docs/Parameters.rst

• extra_params (dict, optional) – Dictionary in the format {“hyperparame-
ter_name” : hyperparameter_value}. Other parameters for the LGBM model. See the list
in: https://github.com/Microsoft/LightGBM/blob/master/docs/Parameters.rst If not passed,
the default will be used.

• prediction_column (str) – The name of the column with the predictions from the
model.

• weight_column (str, optional) – The name of the column with scores to weight
the data.

• encode_extra_cols (bool (default: True)) – If True, treats all columns in df
with name pattern fklearn_feat__col==val‘ as feature columns.

• valid_sets (list of pandas.DataFrame, optional (default=None))
– A list of datasets to be used for early-stopping during training.

• valid_names (list of strings, optional (default=None)) – A list of
dataset names matching the list of datasets provided through the valid_sets parameter.

• feval (callable, list of callable, or None, optional
(default=None)) – Customized evaluation function. Each evaluation function
should accept two parameters: preds, eval_data, and return (eval_name, eval_result,
is_higher_better) or list of such tuples.

• init_model (str, pathlib.Path, Booster or None, optional
(default=None)) – Filename of LightGBM model or Booster instance used for
continue training.

• feature_name (list of str, or 'auto', optional (default="auto
")) – Feature names. If ‘auto’ and data is pandas DataFrame, data columns names are
used.

1.3. fklearn 21

https://github.com/Microsoft/LightGBM/blob/master/docs/Parameters.rst
https://github.com/Microsoft/LightGBM/blob/master/docs/Parameters.rst
https://github.com/Microsoft/LightGBM/blob/master/docs/Parameters.rst
https://github.com/Microsoft/LightGBM/blob/master/docs/Parameters.rst
https://github.com/Microsoft/LightGBM/blob/master/docs/Parameters.rst

fklearn Documentation, Release 3.0.0

• categorical_feature (list of str or int, or 'auto', optional
(default="auto")) – Categorical features. If list of int, interpreted as indices. If list
of str, interpreted as feature names (need to specify feature_name as well). If ‘auto’ and
data is pandas DataFrame, pandas unordered categorical columns are used. All values
in categorical features will be cast to int32 and thus should be less than int32 max value
(2147483647). Large values could be memory consuming. Consider using consecutive
integers starting from zero. All negative values in categorical features will be treated
as missing values. The output cannot be monotonically constrained with respect to a
categorical feature. Floating point numbers in categorical features will be rounded towards
0.

• keep_training_booster (bool, optional (default=False)) – Whether
the returned Booster will be used to keep training. If False, the returned value will be
converted into _InnerPredictor before returning. This means you won’t be able to use eval,
eval_train or eval_valid methods of the returned Booster. When your model is very large and
cause the memory error, you can try to set this param to True to avoid the model conversion
performed during the internal call of model_to_string. You can still use _InnerPredictor as
init_model for future continue training.

• callbacks (list of callable, or None, optional (default=None))
– List of callback functions that are applied at each iteration. See Callbacks in LightGBM
Python API for more information.

• dataset_init_score (list, list of lists (for multi-class
task), numpy array, pandas Series, pandas DataFrame (for) –
multi-class task), or None, optional (default=None) Init score for Dataset. It could be the
prediction of the majority class or a prediction from any other model.

Returns

• p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a
DataFrame with the same columns as df returns a new DataFrame with a new column with
predictions from the model.

• new_df (pandas.DataFrame) – A df -like DataFrame with the same columns as the input df
plus a column with predictions from the model.

• log (dict) – A log-like Dict that stores information of the LGBM Classifier model.

fklearn.training.classification.logistic_classification_learner
Fits an logistic regression classifier to the dataset. Return the predict function for the model and the predictions
for the input dataset.

Parameters

• df (pandas.DataFrame) – A Pandas’ DataFrame with features and target columns. The
model will be trained to predict the target column from the features.

• features (list of str) – A list os column names that are used as features for the
model. All this names should be in df.

• target (str) – The name of the column in df that should be used as target for the model.
This column should be discrete, since this is a classification model.

• params (dict) – The LogisticRegression parameters in the format {“par_name”:
param}. See: http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.
LogisticRegression.html

• prediction_column (str) – The name of the column with the predictions from the
model. If a multiclass problem, additional prediction_column_i columns will be added for i
in range(0,n_classes).

22 Chapter 1. Contents

http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

fklearn Documentation, Release 3.0.0

• weight_column (str, optional) – The name of the column with scores to weight
the data.

• encode_extra_cols (bool (default: True)) – If True, treats all columns in df
with name pattern fklearn_feat__col==val‘ as feature columns.

Returns

• p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a
DataFrame with the same columns as df returns a new DataFrame with a new column with
predictions from the model.

• new_df (pandas.DataFrame) – A df -like DataFrame with the same columns as the input df
plus a column with predictions from the model.

• log (dict) – A log-like Dict that stores information of the Logistic Regression model.

fklearn.training.classification.nlp_logistic_classification_learner
Fits a text vectorizer (TfidfVectorizer) followed by a logistic regression (LogisticRegression).

Parameters

• df (pandas.DataFrame) – A Pandas’ DataFrame with features and target columns. The
model will be trained to predict the target column from the features.

• text_feature_cols (list of str) – A list of column names of the text features
used for the model. All these names should be in df.

• target (str) – The name of the column in df that should be used as target for the model.
This column should be discrete, since this is a classification model.

• vectorizer_params (dict) – The TfidfVectorizer parameters in the format
{“par_name”: param}. See: http://scikit-learn.org/stable/modules/generated/sklearn.
feature_extraction.text.TfidfVectorizer.html

• logistic_params (dict) – The LogisticRegression parameters in the format
{“par_name”: param}. See: http://scikit-learn.org/stable/modules/generated/sklearn.
linear_model.LogisticRegression.html

• prediction_column (str) – The name of the column with the predictions from the
model.

Returns

• p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a
DataFrame with the same columns as df returns a new DataFrame with a new column with
predictions from the model.

• new_df (pandas.DataFrame) – A df -like DataFrame with the same columns as the input df
plus a column with predictions from the model.

• log (dict) – A log-like Dict that stores information of the NLP Logistic Regression model.

fklearn.training.classification.xgb_classification_learner
Fits an XGBoost classifier to the dataset. It first generates a DMatrix with the specified features and labels from
df. Then, it fits a XGBoost model to this DMatrix. Return the predict function for the model and the predictions
for the input dataset.

Parameters

• df (pandas.DataFrame) – A Pandas’ DataFrame with features and target columns. The
model will be trained to predict the target column from the features.

1.3. fklearn 23

http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

fklearn Documentation, Release 3.0.0

• features (list of str) – A list os column names that are used as features for the
model. All this names should be in df.

• target (str) – The name of the column in df that should be used as target for the model.
This column should be discrete, since this is a classification model.

• learning_rate (float) – Float in the range (0, 1] Step size shrinkage used in up-
date to prevents overfitting. After each boosting step, we can directly get the weights of
new features. and eta actually shrinks the feature weights to make the boosting process
more conservative. See the eta hyper-parameter in: http://xgboost.readthedocs.io/en/latest/
parameter.html

• num_estimators (int) – Int in the range (0, inf) Number of boosted trees to fit.
See the n_estimators hyper-parameter in: http://xgboost.readthedocs.io/en/latest/python/
python_api.html

• extra_params (dict, optional) – Dictionary in the format {“hyperparame-
ter_name” : hyperparameter_value}. Other parameters for the XGBoost model. See the
list in: http://xgboost.readthedocs.io/en/latest/parameter.html If not passed, the default will
be used.

• prediction_column (str) – The name of the column with the predictions from the
model. If a multiclass problem, additional prediction_column_i columns will be added for i
in range(0,n_classes).

• weight_column (str, optional) – The name of the column with scores to weight
the data.

• encode_extra_cols (bool (default: True)) – If True, treats all columns in df
with name pattern fklearn_feat__col==val‘ as feature columns.

Returns

• p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a
DataFrame with the same columns as df returns a new DataFrame with a new column with
predictions from the model.

• new_df (pandas.DataFrame) – A df -like DataFrame with the same columns as the input df
plus a column with predictions from the model.

• log (dict) – A log-like Dict that stores information of the XGboost Classifier model.

fklearn.training.ensemble module

fklearn.training.ensemble.xgb_octopus_classification_learner
Octopus ensemble allows you to inject domain specific knowledge to force a split in an initial feature, instead of
assuming the tree model will do that intelligent split on its own. It works by first defining a split on your dataset
and then training one individual model in each separated dataset.

Parameters

• train_set (pd.DataFrame) – A Pandas’ DataFrame with features, target columns and
a splitting column that must be categorical.

• learning_rate_by_bin (dict) – A dictionary of learning rate in the XGBoost model
to use in each model split. Ex: if you want to split your training by tenure and you have a
tenure column with integer values [1,2,3,. . . ,12], you have to specify a list of learning rates
for each split:

24 Chapter 1. Contents

http://xgboost.readthedocs.io/en/latest/parameter.html
http://xgboost.readthedocs.io/en/latest/parameter.html
http://xgboost.readthedocs.io/en/latest/python/python_api.html
http://xgboost.readthedocs.io/en/latest/python/python_api.html
http://xgboost.readthedocs.io/en/latest/parameter.html

fklearn Documentation, Release 3.0.0

{
1: 0.08,
2: 0.08,
...
12: 0.1

}

• num_estimators_by_bin (dict) – A dictionary of number of tree estimators in the
XGBoost model to use in each model split. Ex: if you want to split your training by tenure
and you have a tenure column with integer values [1,2,3,. . . ,12], you have to specify a list
of estimators for each split:

{
1: 300,
2: 250,
...
12: 300

}

• extra_params_by_bin (dict) – A dictionary of extra parameters dictionaries in the
XGBoost model to use in each model split. Ex: if you want to split your training by tenure
and you have a tenure column with integer values [1,2,3,. . . ,12], you have to specify a list
of extra parameters for each split:

{
1: {

'reg_alpha': 0.0,
'colsample_bytree': 0.4,
...
'colsample_bylevel': 0.8
}

2: {
'reg_alpha': 0.1,
'colsample_bytree': 0.6,
...
'colsample_bylevel': 0.4
}

...
12: {

'reg_alpha': 0.0,
'colsample_bytree': 0.7,
...
'colsample_bylevel': 1.0
}

}

• features_by_bin (dict) – A dictionary of features to use in each model split. Ex: if
you want to split your training by tenure and you have a tenure column with integer values
[1,2,3,. . . ,12], you have to specify a list of features for each split:

{
1: [feature-1, feature-2, feature-3, ...],
2: [feature-1, feature-3, feature-5, ...],
...
12: [feature-2, feature-4, feature-8, ...]

}

1.3. fklearn 25

fklearn Documentation, Release 3.0.0

• train_split_col (str) – The name of the categorical column where the model will
make the splits. Ex: if you want to split your training by tenure, you can have a categorical
column called “tenure”.

• train_split_bins (list) – A list with the actual values of the categories from the
train_split_col. Ex: if you want to split your training by tenure and you have a tenure column
with integer values [1,2,3,. . . ,12] you can pass this list and you will split your training into
12 different models.

• nthread (int) – Number of threads for the XGBoost learners.

• target_column (str) – The name of the target column.

• prediction_column (str) – The name of the column with the predictions from the
model.

Returns

• p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a
DataFrame with the same columns as df returns a new DataFrame with a new column with
predictions from the model.

• new_df (pandas.DataFrame) – A df -like DataFrame with the same columns as the input df
plus a column with predictions from the model.

• log (dict) – A log-like Dict that stores information of the Octopus XGB Classifier model.

fklearn.training.imputation module

fklearn.training.imputation.imputer
Fits a missing value imputer to the dataset.

Parameters

• df (pandas.DataFrame) – A Pandas’ DataFrame with columns to impute missing val-
ues. It must contain all columns listed in columns_to_impute

• columns_to_impute (List of strings) – A list of names of the columns for
missing value imputation.

• impute_strategy (String, (default="median")) – The imputation strategy.
- If “mean”, then replace missing values using the mean along the axis. - If “median”, then
replace missing values using the median along the axis. - If “most_frequent”, then replace
missing using the most frequent value along the axis.

• placeholder_value (Any, (default=None)) – if not None, use this as default
value when some features only contains NA values on training. For transformation, NA
values on those features will be replaced by fill_value.

Returns

• p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a
DataFrame with the same columns as df returns a new DataFrame with a new column with
predictions from the model.

• new_df (pandas.DataFrame) – A df -like DataFrame with the same columns as the input df
plus a column with predictions from the model.

• log (dict) – A log-like Dict that stores information of the SimpleImputer model.

fklearn.training.imputation.placeholder_imputer
Fills missing values with a fixed value.

26 Chapter 1. Contents

fklearn Documentation, Release 3.0.0

Parameters

• df (pandas.DataFrame) – A Pandas’ DataFrame with columns to fill missing values.
It must contain all columns listed in columns_to_impute

• columns_to_impute (List of strings) – A list of names of the columns for fill-
ing missing value.

• placeholder_value (Any, (default=-999)) – The value used to fill in missing
values.

Returns

• p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a
DataFrame with the same columns as df returns a new DataFrame with a new column with
predictions from the model.

• new_df (pandas.DataFrame) – A df -like DataFrame with the same columns as the input df
plus a column with predictions from the model.

• log (dict) – A log-like Dict that stores information of the Placeholder SimpleImputer model.

fklearn.training.pipeline module

fklearn.training.pipeline.build_pipeline(*learners, has_repeated_learners: bool = False)
→ Callable[[pandas.core.frame.DataFrame], Tu-
ple[Callable[[...], pandas.core.frame.DataFrame],
pandas.core.frame.DataFrame, Dict[str, Any]]]

Builds a pipeline of different chained learners functions with the possibility of using keyword arguments in the
predict functions of the pipeline.

Say you have two learners, you create a pipeline with pipeline = build_pipeline(learner1, learner2). Those
learners must be functions with just one unfilled argument (the dataset itself).

Then, you train the pipeline with predict_fn, transformed_df, logs = pipeline(df), which will be like applying
the learners in the following order: learner2(learner1(df)).

Finally, you predict on different datasets with pred_df = predict_fn(new_df), with optional kwargs. For example,
if you have XGBoost or LightGBM, you can get SHAP values with predict_fn(new_df, apply_shap=True).

Parameters

• learners (partially-applied learner functions.) –

• has_repeated_learners (bool) – Boolean value indicating wheter the pipeline con-
tains learners with the same name or not.

Returns

• p (function pandas.DataFrame, **kwargs -> pandas.DataFrame) – A function that when
applied to a DataFrame will apply all learner functions in sequence, with optional kwargs.

• new_df (pandas.DataFrame) – A DataFrame that is the result of applying all learner func-
tion in sequence.

• log (dict) – A log-like Dict that stores information of all learner functions.

fklearn.training.regression module

fklearn.training.regression.catboost_regressor_learner
Fits an CatBoost regressor to the dataset. It first generates a Pool with the specified features and labels from df.

1.3. fklearn 27

fklearn Documentation, Release 3.0.0

Then it fits a CatBoost model to this Pool. Return the predict function for the model and the predictions for the
input dataset.

Parameters

• df (pandas.DataFrame) – A Pandas’ DataFrame with features and target columns. The
model will be trained to predict the target column from the features.

• features (list of str) – A list os column names that are used as features for the
model. All this names should be in df.

• target (str) – The name of the column in df that should be used as target for the model.
This column should be numerical and continuous, since this is a regression model.

• learning_rate (float) – Float in range [0,1]. Step size shrinkage used in update to
prevents overfitting. After each boosting step, we can directly get the weights of new fea-
tures. and eta actually shrinks the feature weights to make the boosting process more conser-
vative. See the eta hyper-parameter in: https://catboost.ai/docs/concepts/python-reference_
parameters-list.html

• num_estimators (int) – Int in range [0, inf] Number of boosted trees to fit. See
the n_estimators hyper-parameter in: https://catboost.ai/docs/concepts/python-reference_
parameters-list.html

• extra_params (dict, optional) – Dictionary in the format {“hyperparame-
ter_name” : hyperparameter_value. Other parameters for the CatBoost model. See the list
in: https://catboost.ai/docs/concepts/python-reference_catboostregressor.html If not passed,
the default will be used.

• prediction_column (str) – The name of the column with the predictions from the
model.

• weight_column (str, optional) – The name of the column with scores to weight
the data.

Returns

• p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a
DataFrame with the same columns as df returns a new DataFrame with a new column with
predictions from the model.

• new_df (pandas.DataFrame) – A df -like DataFrame with the same columns as the input df
plus a column with predictions from the model.

• log (dict) – A log-like Dict that stores information of the CatBoostRegressor model.

fklearn.training.regression.custom_supervised_model_learner
Fits a custom model to the dataset. Return the predict function, the predictions for the input dataset and a log
describing the model.

Parameters

• df (pandas.DataFrame) – A Pandas’ DataFrame with features and target columns. The
model will be trained to predict the target column from features.

• features (list of str) – A list os column names that are used as features for the
model. All this names should be in df.

• target (str) – The name of the column in df that should be used as target for the model.

• model (Object) – Machine learning model to be used for regression or clasisfication.
model object must have “.fit” attribute to train the data. For classification problems, it also
needs “.predict_proba” attribute. For regression problemsm it needs “.predict” attribute.

28 Chapter 1. Contents

https://catboost.ai/docs/concepts/python-reference_parameters-list.html
https://catboost.ai/docs/concepts/python-reference_parameters-list.html
https://catboost.ai/docs/concepts/python-reference_parameters-list.html
https://catboost.ai/docs/concepts/python-reference_parameters-list.html
https://catboost.ai/docs/concepts/python-reference_catboostregressor.html

fklearn Documentation, Release 3.0.0

• supervised_type (str) – Type of supervised learning to be used The options are:
‘classification’ or ‘regression’

• log (Dict[str, Dict]) – Log with additional information of the custom model used.
It must start with just one element with the model name.

• prediction_column (str) – The name of the column with the predictions from
the model. For classification problems, all probabilities wiill be added: for i in
range(0,n_classes). For regression just prediction_column will be added.

Returns

• p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a
DataFrame with the same columns as df returns a new DataFrame with a new column with
predictions from the model.

• new_df (pandas.DataFrame) – A df -like DataFrame with the same columns as the input df
plus a column with predictions from the model.

• log (dict) – A log-like Dict that stores information of the Custom Supervised Model Learner
model.

fklearn.training.regression.elasticnet_regression_learner
Fits an elastic net regressor to the dataset. Return the predict function for the model and the predictions for the
input dataset.

Parameters

• df (pandas.DataFrame) – A Pandas’ DataFrame with features and target columns. The
model will be trained to predict the target column from the features.

• features (list of str) – A list os column names that are used as features for the
model. All this names should be in df.

• target (str) – The name of the column in df that should be used as target for the model.
This column should be continuous, since this is a regression model.

• params (dict) – The ElasticNet parameters in the format {“par_name”: param}. See:
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNet.html

• prediction_column (str) – The name of the column with the predictions from the
model.

• weight_column (str, optional) – The name of the column with scores to weight
the data.

• encode_extra_cols (bool (default: True)) – If True, treats all columns in df
with name pattern fklearn_feat__col==val‘ as feature columns.

Returns

• p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a
DataFrame with the same columns as df returns a new DataFrame with a new column with
predictions from the model.

• new_df (pandas.DataFrame) – A df -like DataFrame with the same columns as the input df
plus a column with predictions from the model.

• log (dict) – A log-like Dict that stores information of the ElasticNet Regression model.

fklearn.training.regression.gp_regression_learner
Fits an gaussian process regressor to the dataset.

Parameters

1.3. fklearn 29

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNet.html

fklearn Documentation, Release 3.0.0

• df (pandas.DataFrame) – A Pandas’ DataFrame with features and target columns. The
model will be trained to predict the target column from the features.

• features (list of str) – A list os column names that are used as features for the
model. All this names should be in df.

• target (str) – The name of the column in df that should be used as target for the model.
This column should be numerical and continuous, since this is a regression model.

• kernel (sklearn.gaussian_process.kernels) – The kernel specifying the co-
variance function of the GP. If None is passed, the kernel “1.0 * RBF(1.0)” is used as default.
Note that the kernel’s hyperparameters are optimized during fitting.

• alpha (float) – Value added to the diagonal of the kernel matrix during fitting. Larger
values correspond to increased noise level in the observations. This can also prevent a
potential numerical issue during fitting, by ensuring that the calculated values form a positive
definite matrix.

• extra_variance (float) – The amount of extra variance to scale to the predictions in
standard deviations. If left as the default “fit”, Uses the standard deviation of the target.

• return_std (bool) – If True, the standard-deviation of the predictive distribution at the
query points is returned along with the mean.

• extra_params (dict {"hyperparameter_name" :
hyperparameter_value}, optional) – Other parameters for the Gaussian-
ProcessRegressor model. See the list in: http://scikit-learn.org/stable/modules/generated/
sklearn.gaussian_process.GaussianProcessRegressor.html If not passed, the default will be
used.

• prediction_column (str) – The name of the column with the predictions from the
model.

• encode_extra_cols (bool (default: True)) – If True, treats all columns in df
with name pattern fklearn_feat__col==val‘ as feature columns.

Returns

• p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a
DataFrame with the same columns as df returns a new DataFrame with a new column with
predictions from the model.

• new_df (pandas.DataFrame) – A df -like DataFrame with the same columns as the input df
plus a column with predictions from the model.

• log (dict) – A log-like Dict that stores information of the Gaussian Process Regressor model.

fklearn.training.regression.lgbm_regression_learner
Fits an LGBM regressor to the dataset.

It first generates a Dataset with the specified features and labels from df. Then, it fits a LGBM model to this
Dataset. Return the predict function for the model and the predictions for the input dataset.

Parameters

• df (pandas.DataFrame) – A Pandas’ DataFrame with features and target columns. The
model will be trained to predict the target column from the features.

• features (list of str) – A list os column names that are used as features for the
model. All this names should be in df.

• target (str) – The name of the column in df that should be used as target for the model.
This column should be binary, since this is a classification model.

30 Chapter 1. Contents

http://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.GaussianProcessRegressor.html
http://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.GaussianProcessRegressor.html

fklearn Documentation, Release 3.0.0

• learning_rate (float) – Float in the range (0, 1] Step size shrinkage used in up-
date to prevents overfitting. After each boosting step, we can directly get the weights of
new features. and eta actually shrinks the feature weights to make the boosting process
more conservative. See the learning_rate hyper-parameter in: https://github.com/Microsoft/
LightGBM/blob/master/docs/Parameters.rst

• num_estimators (int) – Int in the range (0, inf) Number of boosted trees to fit. See the
num_iterations hyper-parameter in: https://github.com/Microsoft/LightGBM/blob/master/
docs/Parameters.rst

• extra_params (dict, optional) – Dictionary in the format {“hyperparame-
ter_name” : hyperparameter_value}. Other parameters for the LGBM model. See the list
in: https://github.com/Microsoft/LightGBM/blob/master/docs/Parameters.rst If not passed,
the default will be used.

• prediction_column (str) – The name of the column with the predictions from the
model.

• weight_column (str, optional) – The name of the column with scores to weight
the data.

• encode_extra_cols (bool (default: True)) – If True, treats all columns in df
with name pattern fklearn_feat__col==val‘ as feature columns.

Returns

• p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a
DataFrame with the same columns as df returns a new DataFrame with a new column with
predictions from the model.

• new_df (pandas.DataFrame) – A df -like DataFrame with the same columns as the input df
plus a column with predictions from the model.

• log (dict) – A log-like Dict that stores information of the LGBM Regressor model.

fklearn.training.regression.linear_regression_learner
Fits an linear regressor to the dataset. Return the predict function for the model and the predictions for the input
dataset.

Parameters

• df (pandas.DataFrame) – A Pandas’ DataFrame with features and target columns. The
model will be trained to predict the target column from the features.

• features (list of str) – A list os column names that are used as features for the
model. All this names should be in df.

• target (str) – The name of the column in df that should be used as target for the model.
This column should be continuous, since this is a regression model.

• params (dict) – The LinearRegression parameters in the format {“par_name”:
param}. See: http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.
LinearRegression.html

• prediction_column (str) – The name of the column with the predictions from the
model.

• weight_column (str, optional) – The name of the column with scores to weight
the data.

• encode_extra_cols (bool (default: True)) – If True, treats all columns in df
with name pattern fklearn_feat__col==val‘ as feature columns.

1.3. fklearn 31

https://github.com/Microsoft/LightGBM/blob/master/docs/Parameters.rst
https://github.com/Microsoft/LightGBM/blob/master/docs/Parameters.rst
https://github.com/Microsoft/LightGBM/blob/master/docs/Parameters.rst
https://github.com/Microsoft/LightGBM/blob/master/docs/Parameters.rst
https://github.com/Microsoft/LightGBM/blob/master/docs/Parameters.rst
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html

fklearn Documentation, Release 3.0.0

Returns

• p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a
DataFrame with the same columns as df returns a new DataFrame with a new column with
predictions from the model.

• new_df (pandas.DataFrame) – A df -like DataFrame with the same columns as the input df
plus a column with predictions from the model.

• log (dict) – A log-like Dict that stores information of the Linear Regression model.

fklearn.training.regression.xgb_regression_learner
Fits an XGBoost regressor to the dataset. It first generates a DMatrix with the specified features and labels from
df. Then it fits a XGBoost model to this DMatrix. Return the predict function for the model and the predictions
for the input dataset.

Parameters

• df (pandas.DataFrame) – A Pandas’ DataFrame with features and target columns. The
model will be trained to predict the target column from the features.

• features (list of str) – A list os column names that are used as features for the
model. All this names should be in df.

• target (str) – The name of the column in df that should be used as target for the model.
This column should be numerical and continuous, since this is a regression model.

• learning_rate (float) – Float in range [0,1]. Step size shrinkage used in update to
prevents overfitting. After each boosting step, we can directly get the weights of new fea-
tures. and eta actually shrinks the feature weights to make the boosting process more con-
servative. See the eta hyper-parameter in: http://xgboost.readthedocs.io/en/latest/parameter.
html

• num_estimators (int) – Int in range [0, inf] Number of boosted trees to fit. See the
n_estimators hyper-parameter in: http://xgboost.readthedocs.io/en/latest/python/python_
api.html

• extra_params (dict, optional) – Dictionary in the format {“hyperparame-
ter_name” : hyperparameter_value. Other parameters for the XGBoost model. See the
list in: http://xgboost.readthedocs.io/en/latest/parameter.html If not passed, the default will
be used.

• prediction_column (str) – The name of the column with the predictions from the
model.

• weight_column (str, optional) – The name of the column with scores to weight
the data.

• encode_extra_cols (bool (default: True)) – If True, treats all columns in df
with name pattern fklearn_feat__col==val‘ as feature columns.

Returns

• p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a
DataFrame with the same columns as df returns a new DataFrame with a new column with
predictions from the model.

• new_df (pandas.DataFrame) – A df -like DataFrame with the same columns as the input df
plus a column with predictions from the model.

• log (dict) – A log-like Dict that stores information of the XGboost Regressor model.

32 Chapter 1. Contents

http://xgboost.readthedocs.io/en/latest/parameter.html
http://xgboost.readthedocs.io/en/latest/parameter.html
http://xgboost.readthedocs.io/en/latest/python/python_api.html
http://xgboost.readthedocs.io/en/latest/python/python_api.html
http://xgboost.readthedocs.io/en/latest/parameter.html

fklearn Documentation, Release 3.0.0

fklearn.training.transformation module

fklearn.training.transformation.apply_replacements(df: pan-
das.core.frame.DataFrame,
columns: List[str], vec: Dict[str,
Dict], replace_unseen: Any) →
pandas.core.frame.DataFrame

Base function to apply the replacements values found on the “vec” vectors into the df DataFrame.

Parameters

• df (pandas.DataFrame) – A Pandas DataFrame containing the data to be replaced.

• columns (list of str) – The df columns names to perform the replacements.

• vec (dict) – A dict mapping a col to dict mapping a value to its replacement. For example:
vec = {“feature1”: {1: 2, 3: 5, 6: 8}}

• replace_unseen (Any) – Default value to replace when original value is not present in
the vec dict for the feature

fklearn.training.transformation.capper(df: pandas.core.frame.DataFrame =
’__no__default__’, columns_to_cap: List[str]
= ’__no__default__’, precomputed_caps:
Dict[str, float] = None) → Union[Callable,
Tuple[Callable[[...], pandas.core.frame.DataFrame],
pandas.core.frame.DataFrame, Dict[str, Any]]]

Learns the maximum value for each of the columns_to_cap and used that as the cap for those columns. If
precomputed caps are passed, the function uses that as the cap value instead of computing the maximum.

Parameters

• df (pandas.DataFrame) – A Pandas’ DataFrame that must contain columns_to_cap
columns.

• columns_to_cap (list of str) – A list os column names that should be caped.

• precomputed_caps (dict) – A dictionary on the format {“column_name” :
cap_value}. That maps column names to pre computed cap values

Returns

• p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a
DataFrame with the same columns as df returns a new DataFrame with a new column with
predictions from the model.

• new_df (pandas.DataFrame) – A df -like DataFrame with the same columns as the input df
plus a column with predictions from the model.

• log (dict) – A log-like Dict that stores information of the Capper model.

fklearn.training.transformation.count_categorizer(df: pandas.core.frame.DataFrame
= ’__no__default__’,
columns_to_categorize: List[str] =
’__no__default__’, replace_unseen:
int = -1, store_mapping: bool
= False) → Union[Callable,
Tuple[Callable[[...], pan-
das.core.frame.DataFrame], pan-
das.core.frame.DataFrame, Dict[str,
Any]]]

Replaces categorical variables by count.

1.3. fklearn 33

fklearn Documentation, Release 3.0.0

The default behaviour is to replace the original values. To store the original values in a new column, spec-
ify prefix or suffix in the parameters, or specify a dictionary with the desired column mapping using the
columns_mapping parameter.

Parameters

• df (pandas.DataFrame) – A Pandas’ DataFrame that must contain
columns_to_categorize columns.

• columns_to_categorize (list of str) – A list of categorical column names.

• replace_unseen (int) – The value to impute unseen categories.

• store_mapping (bool (default: False)) – Whether to store the feature value
-> integer dictionary in the log

Returns

• p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a
DataFrame with the same columns as df returns a new DataFrame with a new column with
predictions from the model.

• new_df (pandas.DataFrame) – A df -like DataFrame with the same columns as the input df
plus a column with predictions from the model.

• log (dict) – A log-like Dict that stores information of the Count Categorizer model.

fklearn.training.transformation.custom_transformer(df: pandas.core.frame.DataFrame
= ’__no__default__’,
columns_to_transform:
List[str] = ’__no__default__’,
transformation_function:
Callable[[pandas.core.frame.DataFrame],
pandas.core.frame.DataFrame] =
’__no__default__’, is_vectorized:
bool = False) → Union[Callable,
Tuple[Callable[[...], pan-
das.core.frame.DataFrame],
pandas.core.frame.DataFrame,
Dict[str, Any]]]

Applies a custom function to the desired columns.

The default behaviour is to replace the original values. To store the original values in a new column, spec-
ify prefix or suffix in the parameters, or specify a dictionary with the desired column mapping using the
columns_mapping parameter.

Parameters

• df (pandas.DataFrame) – A Pandas’ DataFrame that must contain columns

• columns_to_transform (list of str) – A list of column names that will remain
in the dataframe during training time (fit)

• transformation_function (function(pandas.DataFrame) ->
pandas.DataFrame) – A function that receives a DataFrame as input, performs a
transformation on its columns and returns another DataFrame.

Returns

• p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a
DataFrame with the same columns as df returns a new DataFrame with a new column with
predictions from the model.

34 Chapter 1. Contents

fklearn Documentation, Release 3.0.0

• new_df (pandas.DataFrame) – A df -like DataFrame with the same columns as the input df
plus a column with predictions from the model.

• log (dict) – A log-like Dict that stores information of the Custom Transformer model.

fklearn.training.transformation.discrete_ecdfer
Learns an Empirical Cumulative Distribution Function from the specified column in the input DataFrame. It is
usually used in the prediction column to convert a predicted probability into a score from 0 to 1000.

Parameters

• df (Pandas' pandas.DataFrame) – A Pandas’ DataFrame that must contain a pre-
diction_column columns.

• ascending (bool) – Whether to compute an ascending ECDF or a descending one.

• prediction_column (str) – The name of the column in df to learn the ECDF from.

• ecdf_column (str) – The name of the new ECDF column added by this function.

• max_range (int) –

The maximum value for the ECDF. It will go will go from 0 to max_range.

• round_method (Callable) – A function perform the round of transformed values for
ex: (int, ceil, floor, round)

Returns

• p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a
DataFrame with the same columns as df returns a new DataFrame with a new column with
predictions from the model.

• new_df (pandas.DataFrame) – A df -like DataFrame with the same columns as the input df
plus a column with predictions from the model.

• log (dict) – A log-like Dict that stores information of the Discrete ECDFer model.

fklearn.training.transformation.ecdfer
Learns an Empirical Cumulative Distribution Function from the specified column in the input DataFrame. It is
usually used in the prediction column to convert a predicted probability into a score from 0 to 1000.

Parameters

• df (Pandas' pandas.DataFrame) – A Pandas’ DataFrame that must contain a pre-
diction_column columns.

• ascending (bool) – Whether to compute an ascending ECDF or a descending one.

• prediction_column (str) – The name of the column in df to learn the ECDF from.

• ecdf_column (str) – The name of the new ECDF column added by this function

• max_range (int) –

The maximum value for the ECDF. It will go will go from 0 to max_range.

Returns

• p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a
DataFrame with the same columns as df returns a new DataFrame with a new column with
predictions from the model.

• new_df (pandas.DataFrame) – A df -like DataFrame with the same columns as the input df
plus a column with predictions from the model.

• log (dict) – A log-like Dict that stores information of the ECDFer model.

1.3. fklearn 35

fklearn Documentation, Release 3.0.0

fklearn.training.transformation.floorer(df: pandas.core.frame.DataFrame =
’__no__default__’, columns_to_floor: List[str]
= ’__no__default__’, precomputed_floors:
Dict[str, float] = None) → Union[Callable, Tu-
ple[Callable[[...], pandas.core.frame.DataFrame],
pandas.core.frame.DataFrame, Dict[str, Any]]]

Learns the minimum value for each of the columns_to_floor and used that as the floot for those columns. If
precomputed floors are passed, the function uses that as the cap value instead of computing the minimun.

Parameters

• df (pandas.DataFrame) – A Pandas’ DataFrame that must contain columns_to_floor
columns.

• columns_to_floor (list of str) – A list os column names that should be floored.

• precomputed_floors (dict) – A dictionary on the format {“column_name” :
floor_value} that maps column names to pre computed floor values

Returns

• p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a
DataFrame with the same columns as df returns a new DataFrame with a new column with
predictions from the model.

• new_df (pandas.DataFrame) – A df -like DataFrame with the same columns as the input df
plus a column with predictions from the model.

• log (dict) – A log-like Dict that stores information of the Floorer model.

fklearn.training.transformation.label_categorizer(df: pandas.core.frame.DataFrame
= ’__no__default__’,
columns_to_categorize: List[str]
= ’__no__default__’, re-
place_unseen: Union[str, float]
= nan, store_mapping: bool
= False) → Union[Callable,
Tuple[Callable[[...], pan-
das.core.frame.DataFrame], pan-
das.core.frame.DataFrame, Dict[str,
Any]]]

Replaces categorical variables with a numeric identifier.

The default behaviour is to replace the original values. To store the original values in a new column, spec-
ify prefix or suffix in the parameters, or specify a dictionary with the desired column mapping using the
columns_mapping parameter.

Parameters

• df (pandas.DataFrame) – A Pandas’ DataFrame that must contain
columns_to_categorize columns.

• columns_to_categorize (list of str) – A list of categorical column names.

• replace_unseen (int, str, float, or nan) – The value to impute unseen cat-
egories.

• store_mapping (bool (default: False)) – Whether to store the feature value
-> integer dictionary in the log

Returns

36 Chapter 1. Contents

fklearn Documentation, Release 3.0.0

• p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a
DataFrame with the same columns as df returns a new DataFrame with a new column with
predictions from the model.

• new_df (pandas.DataFrame) – A df -like DataFrame with the same columns as the input df
plus a column with predictions from the model.

• log (dict) – A log-like Dict that stores information of the Label Categorizer model.

fklearn.training.transformation.missing_warner
Creates a new column to warn about rows that columns that don’t have missing in the training set but have
missing on the scoring

Parameters

• df (pandas.DataFrame) – A Pandas’ DataFrame.

• cols_list (list of str) – List of columns to consider when evaluating missingness

• new_column_name (str) – Name of the column created to alert the existence of missing
values

Returns

• p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a
DataFrame with the same columns as df returns a new DataFrame with a new column with
predictions from the model.

• new_df (pandas.DataFrame) – A df -like DataFrame with the same columns as the input df
plus a column with predictions from the model.

• log (dict) – A log-like Dict that stores information of the Missing Alerter model.

fklearn.training.transformation.null_injector
Injects null into columns

Parameters

• df (pandas.DataFrame) – A Pandas’ DataFrame that must contain columns_to_inject
as columns

• columns_to_inject (list of str) – A list of features to inject nulls. If groups is
not None it will be ignored.

• proportion (float) – Proportion of nulls to inject in the columns.

• groups (list of list of str (default = None)) – A list of group of fea-
tures. If not None, feature in the same group will be set to NaN together.

• seed (int) – Random seed for consistency.

Returns

• p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a
DataFrame with the same columns as df returns a new DataFrame with a new column with
predictions from the model.

• new_df (pandas.DataFrame) – A df -like DataFrame with the same columns as the input df
plus a column with predictions from the model.

• log (dict) – A log-like Dict that stores information of the Null Injector model.

1.3. fklearn 37

fklearn Documentation, Release 3.0.0

fklearn.training.transformation.onehot_categorizer(df: pandas.core.frame.DataFrame
= ’__no__default__’,
columns_to_categorize: List[str]
= ’__no__default__’, hard-
code_nans: bool = False,
drop_first_column: bool =
False, store_mapping: bool
= False) → Union[Callable,
Tuple[Callable[[...], pan-
das.core.frame.DataFrame],
pandas.core.frame.DataFrame,
Dict[str, Any]]]

Onehot encoding on categorical columns. Encoded columns are removed and substituted by columns named
fklearn_feat__col==val, where col is the name of the column and val is one of the values the feature can
assume.

The default behaviour is to replace the original values. To store the original values in a new column, spec-
ify prefix or suffix in the parameters, or specify a dictionary with the desired column mapping using the
columns_mapping parameter.

Parameters

• df (pd.DataFrame) – A Pandas’ DataFrame that must contain columns_to_categorize
columns.

• columns_to_categorize (list of str) – A list of categorical column names.
Must be non-empty.

• hardcode_nans (bool) – Hardcodes an extra column with: 1 if nan or unseen else 0.

• drop_first_column (bool) – Drops the first column to create (k-1)-sized one-hot
arrays for k features per categorical column. Can be used to avoid colinearity.

• store_mapping (bool (default: False)) – Whether to store the feature value
-> integer dictionary in the log

Returns

• p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a
DataFrame with the same columns as df returns a new DataFrame with a new column with
predictions from the model.

• new_df (pandas.DataFrame) – A df -like DataFrame with the same columns as the input df
plus a column with predictions from the model.

• log (dict) – A log-like Dict that stores information of the Onehot Categorizer model.

fklearn.training.transformation.prediction_ranger
Caps and floors the specified prediction column to a set range.

Parameters

• df (pandas.DataFrame) – A Pandas’ DataFrame that must contain a predic-
tion_column columns.

• prediction_min (float) – The floor for the prediction.

• prediction_max (float) – The cap for the prediction.

• prediction_column (str) – The name of the column in df to cap and floor

Returns

38 Chapter 1. Contents

fklearn Documentation, Release 3.0.0

• p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a
DataFrame with the same columns as df returns a new DataFrame with a new column with
predictions from the model.

• new_df (pandas.DataFrame) – A df -like DataFrame with the same columns as the input df
plus a column with predictions from the model.

• log (dict) – A log-like Dict that stores information of the Prediction Ranger model.

fklearn.training.transformation.quantile_biner(df: pandas.core.frame.DataFrame =
’__no__default__’, columns_to_bin:
List[str] = ’__no__default__’, q:
int = 4, right: bool = False) →
Union[Callable, Tuple[Callable[[...],
pandas.core.frame.DataFrame], pan-
das.core.frame.DataFrame, Dict[str,
Any]]]

Discretize continuous numerical columns into its quantiles. Uses pandas.qcut to find the bins and then
numpy.digitize to fit the columns into bins.

The default behaviour is to replace the original values. To store the original values in a new column, spec-
ify prefix or suffix in the parameters, or specify a dictionary with the desired column mapping using the
columns_mapping parameter.

Parameters

• df (pandas.DataFrame) – A Pandas’ DataFrame that must contain
columns_to_categorize columns.

• columns_to_bin (list of str) – A list of numerical column names.

• q (int) – Number of quantiles. 10 for deciles, 4 for quartiles, etc. Alternately array of
quantiles, e.g. [0, .25, .5, .75, 1.] for quartiles. See https://pandas.pydata.org/pandas-docs/
stable/generated/pandas.qcut.html

• right (bool) – Indicating whether the intervals include the right or the left bin edge.
Default behavior is (right==False) indicating that the interval does not include the right
edge. The left bin end is open in this case, i.e., bins[i-1] <= x < bins[i] is the default
behavior for monotonically increasing bins. See https://docs.scipy.org/doc/numpy-1.13.0/
reference/generated/numpy.digitize.html

Returns

• p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a
DataFrame with the same columns as df returns a new DataFrame with a new column with
predictions from the model.

• new_df (pandas.DataFrame) – A df -like DataFrame with the same columns as the input df
plus a column with predictions from the model.

• log (dict) – A log-like Dict that stores information of the Quantile Biner model.

1.3. fklearn 39

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.qcut.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.qcut.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.digitize.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.digitize.html

fklearn Documentation, Release 3.0.0

fklearn.training.transformation.rank_categorical(df: pandas.core.frame.DataFrame
= ’__no__default__’,
columns_to_rank: List[str] =
’__no__default__’, replace_unseen:
Union[str, float] = nan,
store_mapping: bool = False) →
Union[Callable, Tuple[Callable[[...],
pandas.core.frame.DataFrame], pan-
das.core.frame.DataFrame, Dict[str,
Any]]]

Rank categorical features by their frequency in the train set.

The default behaviour is to replace the original values. To store the original values in a new column, spec-
ify prefix or suffix in the parameters, or specify a dictionary with the desired column mapping using the
columns_mapping parameter.

Parameters

• df (Pandas' DataFrame) – A Pandas’ DataFrame that must contain a predic-
tion_column columns.

• columns_to_rank (list of str) – The df columns names to perform the rank.

• replace_unseen (int, str, float, or nan) – The value to impute unseen cat-
egories.

• store_mapping (bool (default: False)) – Whether to store the feature value
-> integer dictionary in the log

Returns

• p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a
DataFrame with the same columns as df returns a new DataFrame with a new column with
predictions from the model.

• new_df (pandas.DataFrame) – A df -like DataFrame with the same columns as the input df
plus a column with predictions from the model.

• log (dict) – A log-like Dict that stores information of the Rank Categorical model.

fklearn.training.transformation.selector
Filters a DataFrames by selecting only the desired columns.

Parameters

• df (pandas.DataFrame) – A Pandas’ DataFrame that must contain columns

• training_columns (list of str) – A list of column names that will remain in the
dataframe during training time (fit)

• predict_columns (list of str) – A list of column names that will remain in the
dataframe during prediction time (transform) If None, it defaults to training_columns.

Returns

• p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a
DataFrame with the same columns as df returns a new DataFrame with a new column with
predictions from the model.

• new_df (pandas.DataFrame) – A df -like DataFrame with the same columns as the input df
plus a column with predictions from the model.

• log (dict) – A log-like Dict that stores information of the Selector model.

40 Chapter 1. Contents

fklearn Documentation, Release 3.0.0

fklearn.training.transformation.standard_scaler(df: pandas.core.frame.DataFrame =
’__no__default__’, columns_to_scale:
List[str] = ’__no__default__’) →
Union[Callable, Tuple[Callable[[...],
pandas.core.frame.DataFrame], pan-
das.core.frame.DataFrame, Dict[str,
Any]]]

Fits a standard scaler to the dataset.

The default behaviour is to replace the original values. To store the original values in a new column, spec-
ify prefix or suffix in the parameters, or specify a dictionary with the desired column mapping using the
columns_mapping parameter.

Parameters

• df (pandas.DataFrame) – A Pandas’ DataFrame with columns to scale. It must contain
all columns listed in columns_to_scale.

• columns_to_scale (list of str) – A list of names of the columns for standard
scaling.

Returns

• p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a
DataFrame with the same columns as df returns a new DataFrame with a new column with
predictions from the model.

• new_df (pandas.DataFrame) – A df -like DataFrame with the same columns as the input df
plus a column with predictions from the model.

• log (dict) – A log-like Dict that stores information of the Standard Scaler model.

fklearn.training.transformation.target_categorizer(df: pandas.core.frame.DataFrame
= ’__no__default__’,
columns_to_categorize:
List[str] = ’__no__default__’,
target_column: str =
’__no__default__’, smooth-
ing: float = 1.0, ignore_unseen:
bool = True, store_mapping: bool
= False) → Union[Callable,
Tuple[Callable[[...], pan-
das.core.frame.DataFrame],
pandas.core.frame.DataFrame,
Dict[str, Any]]]

Replaces categorical variables with the smoothed mean of the target variable by category. Uses a weighted
average with the overall mean of the target variable for smoothing.

The default behaviour is to replace the original values. To store the original values in a new column, spec-
ify prefix or suffix in the parameters, or specify a dictionary with the desired column mapping using the
columns_mapping parameter.

Parameters

• df (pandas.DataFrame) – A Pandas’ DataFrame that must contain
columns_to_categorize and target_column columns.

• columns_to_categorize (list of str) – A list of categorical column names.

• target_column (str) – Target column name. Target can be binary or continuous.

1.3. fklearn 41

fklearn Documentation, Release 3.0.0

• smoothing (float (default: 1.0)) – Weight given to overall target mean against
target mean by category. The value must be greater than or equal to 0

• ignore_unseen (bool (default: True)) – If True, unseen values will be en-
coded as nan If False, these will be replaced by target mean.

• store_mapping (bool (default: False)) – Whether to store the feature value
-> float dictionary in the log.

Returns

• p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a
DataFrame with the same columns as df returns a new DataFrame with a new column with
predictions from the model.

• new_df (pandas.DataFrame) – A df -like DataFrame with the same columns as the input df
plus a column with predictions from the model.

• log (dict) – A log-like Dict that stores information of the Target Categorizer model.

fklearn.training.transformation.truncate_categorical(df: pan-
das.core.frame.DataFrame
= ’__no__default__’,
columns_to_truncate: List[str]
= ’__no__default__’,
percentile: float =
’__no__default__’, replace-
ment: Union[str, float]
= -9999, replace_unseen:
Union[str, float] = -9999,
store_mapping: bool =
False) → Union[Callable,
Tuple[Callable[[...], pan-
das.core.frame.DataFrame],
pandas.core.frame.DataFrame,
Dict[str, Any]]]

Truncate infrequent categories and replace them by a single one. You can think of it like “others” category.

The default behaviour is to replace the original values. To store the original values in a new column, spec-
ify prefix or suffix in the parameters, or specify a dictionary with the desired column mapping using the
columns_mapping parameter.

Parameters

• df (pandas.DataFrame) – A Pandas’ DataFrame that must contain a predic-
tion_column columns.

• columns_to_truncate (list of str) – The df columns names to perform the
truncation.

• percentile (float) – Categories less frequent than the percentile will be replaced by
the same one.

• replacement (int, str, float or nan) – The value to use when a category is
less frequent that the percentile variable.

• replace_unseen (int, str, float, or nan) – The value to impute unseen cat-
egories.

• store_mapping (bool (default: False)) – Whether to store the feature value
-> integer dictionary in the log.

42 Chapter 1. Contents

fklearn Documentation, Release 3.0.0

Returns

• p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a
DataFrame with the same columns as df returns a new DataFrame with a new column with
predictions from the model.

• new_df (pandas.DataFrame) – A df -like DataFrame with the same columns as the input df
plus a column with predictions from the model.

• log (dict) – A log-like Dict that stores information of the Truncate Categorical model.

fklearn.training.transformation.value_mapper(df: pandas.core.frame.DataFrame
= ’__no__default__’, value_maps:
Dict[str, Dict] = ’__no__default__’,
ignore_unseen: bool = True, re-
place_unseen_to: Any = nan) →
Union[Callable, Tuple[Callable[[...],
pandas.core.frame.DataFrame], pan-
das.core.frame.DataFrame, Dict[str, Any]]]

Map values in selected columns in the DataFrame according to dictionaries of replacements. Learner wrapper
for apply_replacements

Parameters

• df (pandas.DataFrame) – A Pandas DataFrame containing the data to be replaced.

• value_maps (dict of dicts) – A dict mapping a col to dict mapping a value to its
replacement. For example: value_maps = {“feature1”: {1: 2, 3: 5, 6: 8}}

• ignore_unseen (bool) – If True, values not explicitly declared in value_maps will be
left as is. If False, these will be replaced by replace_unseen_to.

• replace_unseen_to (Any) – Default value to replace when original value is not
present in the vec dict for the feature.

fklearn.training.unsupervised module

fklearn.training.unsupervised.isolation_forest_learner
Fits an anomaly detection algorithm (Isolation Forest) to the dataset

Parameters

• df (pandas.DataFrame) – A Pandas’ DataFrame with features and target columns. The
model will be trained to predict the target column from the features.

• features (list of str) – A list os column names that are used as features for the
model. All this names should be in df.

• params (dict) – The IsolationForest parameters in the format {“par_name”: param}.
See: http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html

• prediction_column (str) – The name of the column with the predictions from the
model.

• encode_extra_cols (bool (default: True)) – If True, treats all columns in df
with name pattern fklearn_feat__col==val‘ as feature columns.

Returns

• p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a
DataFrame with the same columns as df returns a new DataFrame with a new column with
predictions from the model.

1.3. fklearn 43

http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html

fklearn Documentation, Release 3.0.0

• new_df (pandas.DataFrame) – A df -like DataFrame with the same columns as the input df
plus a column with predictions from the model.

• log (dict) – A log-like Dict that stores information of the Isolation Forest model.

fklearn.training.utils module

fklearn.training.utils.expand_features_encoded(df: pandas.core.frame.DataFrame, fea-
tures: List[str])→ List[str]

Expand the list of features to include features created automatically by fklearn in encoders such as Onehot-
encoder. All features created by fklearn have the naming pattern fklearn_feat__col==val. This function looks
for these names in the DataFrame columns, checks if they can be derivative of any of the features listed in
features, adds them to the new list of features and removes the original names from the list.

E.g. df has columns col1 with values 0 and 1 and col2. After Onehot-encoding col1 df will have columns
fklearn_feat_col1==0, fklearn_feat_col1==1, col2. This function will then add fklearn_feat_col1==0 and
fklearn_feat_col1==1 to the list of features and remove col1. If for some reason df also has another column
fklearn_feat_col3==x but col3 is not on the list of features, this column will not be added.

Parameters

• df (pd.DataFrame) – A Pandas’ DataFrame with all features.

• features (list of str) – The original list of features.

fklearn.training.utils.log_learner_time

fklearn.training.utils.print_learner_run

Module contents

fklearn.tuning package

Submodules

fklearn.tuning.model_agnostic_fc module

fklearn.tuning.model_agnostic_fc.correlation_feature_selection
Feature selection based on correlation

Parameters

• train_set (pd.DataFrame) – A Pandas’ DataFrame with the training data

• features (list of str) – The list of features to consider when dropping with corre-
lation

• threshold (float) – The correlation threshold. Will drop features with correlation
equal or above this threshold

Returns

Return type log with feature correlation, features to drop and final features

fklearn.tuning.model_agnostic_fc.variance_feature_selection
Feature selection based on variance

Parameters

44 Chapter 1. Contents

fklearn Documentation, Release 3.0.0

• train_set (pd.DataFrame) – A Pandas’ DataFrame with the training data

• features (list of str) – The list of features to consider when dropping with vari-
ance

• threshold (float) – The variance threshold. Will drop features with variance equal or
bellow this threshold

Returns

Return type log with feature variance, features to drop and final features

fklearn.tuning.parameter_tuners module

fklearn.tuning.samplers module

fklearn.tuning.samplers.remove_by_feature_importance
Performs feature selection based on feature importance

Parameters

• log (dict) – Dictionaries evaluations.

• num_removed_by_step (int (default 5)) – The number of features to remove

Returns features – The remaining features after removing based on feature importance

Return type list of str

fklearn.tuning.samplers.remove_by_feature_shuffling
Performs feature selection based on the evaluation of the test vs the evaluation of the test with randomly shuffled
features

Parameters

• log (LogType) – Dictionaries evaluations.

• predict_fn (function pandas.DataFrame -> pandas.DataFrame) – A
partially defined predictor that takes a DataFrame and returns the predicted score for this
dataframe

• eval_fn (function DataFrame -> log dict) – A partially defined evaluation
function that takes a dataset with prediction and returns the evaluation logs.

• eval_data (pandas.DataFrame) – Data used to evaluate the model after shuffling

• extractor (function str -> float) – A extractor that take a string and returns
the value of that string on a dict

• metric_name (str) – String with the name of the column that refers to the metric column
to be extracted

• max_removed_by_step (int (default 5)) – The maximum number of features
to remove. It will only consider the least max_removed_by_step in terms of feature impor-
tance. If speed_up_by_importance=True it will first filter the least relevant feature an shuffle
only those. If speed_up_by_importance=False it will shuffle all features and drop the last
max_removed_by_step in terms of PIMP. In both cases, the features will only be removed
if drop in performance is up to the defined threshold.

• threshold (float (default 0.005)) – Threshold for model performance com-
parison

1.3. fklearn 45

fklearn Documentation, Release 3.0.0

• speed_up_by_importance (bool (default True)) – If it should narrow search
looking at feature importance first before getting PIMP importance. If True, will only shuffle
the top num_removed_by_step in terms of feature importance.

• parallel (bool (default False)) –

• nthread (int (default 1)) –

• seed (int (default 7)) – Random seed

Returns features – The remaining features after removing based on feature importance

Return type list of str

fklearn.tuning.samplers.remove_features_subsets
Performs feature selection based on the best performing model out of several trained models

Parameters

• log_list (list of dict) – A list of log-like lists of dictionaries evaluations.

• extractor (function string -> float) – A extractor that take a string and re-
turns the value of that string on a dict

• metric_name (str) – String with the name of the column that refers to the metric column
to be extracted

• num_removed_by_step (int (default 1)) – The number of features to remove

Returns keys – The remaining keys of feature sets after choosing the current best subset

Return type list of str

fklearn.tuning.selectors module

fklearn.tuning.stoppers module

fklearn.tuning.stoppers.aggregate_stop_funcs(*stop_funcs) →
Callable[[List[List[Dict[str, Any]]]],
bool]

Aggregate stop functions

Parameters stop_funcs (list of function list of dict -> bool) –

Returns l – Function that performs the Or logic of all stop_fn applied to the logs

Return type function logs -> bool

fklearn.tuning.stoppers.stop_by_iter_num
Checks for logs to see if feature selection should stop

Parameters

• logs (list of list of dict) – A list of log-like lists of dictionaries evaluations.

• iter_limit (int (default 50)) – Limit of Iterations

Returns stop – A boolean whether to stop recursion or not

Return type bool

fklearn.tuning.stoppers.stop_by_no_improvement
Checks for logs to see if feature selection should stop

Parameters

46 Chapter 1. Contents

fklearn Documentation, Release 3.0.0

• logs (list of list of dict) – A list of log-like lists of dictionaries evaluations.

• extractor (function str -> float) – A extractor that take a string and returns
the value of that string on a dict

• metric_name (str) – String with the name of the column that refers to the metric column
to be extracted

• early_stop (int (default 3)) – Number of iteration without improval before stop-
ping

• threshold (float (default 0.001)) – Threshold for model performance com-
parison

Returns stop – A boolean whether to stop recursion or not

Return type bool

fklearn.tuning.stoppers.stop_by_no_improvement_parallel
Checks for logs to see if feature selection should stop

Parameters

• logs (list of list of dict) – A list of log-like lists of dictionaries evaluations.

• extractor (function str -> float) – A extractor that take a string and returns
the value of that string on a dict

• metric_name (str) – String with the name of the column that refers to the metric column
to be extracted

• early_stop (int (default 3)) – Number of iterations without improvements be-
fore stopping

• threshold (float (default 0.001)) – Threshold for model performance com-
parison

Returns stop – A boolean whether to stop recursion or not

Return type bool

fklearn.tuning.stoppers.stop_by_num_features
Checks for logs to see if feature selection should stop

Parameters

• logs (list of list of dict) – A list of log-like lists of dictionaries evaluations.

• min_num_features (int (default 50)) – The minimun number of features the
model can have before stopping

Returns stop – A boolean whether to stop recursion or not

Return type bool

fklearn.tuning.stoppers.stop_by_num_features_parallel
Selects the best log out of a list to see if feature selection should stop

Parameters

• logs (list of list of list of dict) – A list of log-like lists of dictionaries
evaluations.

• extractor (function str -> float) – A extractor that take a string and returns
the value of that string on a dict

1.3. fklearn 47

fklearn Documentation, Release 3.0.0

• metric_name (str) – String with the name of the column that refers to the metric column
to be extracted

• min_num_features (int (default 50)) – The minimun number of features the
model can have before stopping

Returns stop – A boolean whether to stop recursion or not

Return type bool

fklearn.tuning.utils module

fklearn.tuning.utils.gen_dict_extract(key: str, obj: Dict)→ Generator[Any, None, None]

fklearn.tuning.utils.gen_key_avgs_from_dicts(obj: List)→ Dict[str, float]

fklearn.tuning.utils.gen_key_avgs_from_iteration(key: str, log: Dict)→ Any

fklearn.tuning.utils.gen_key_avgs_from_logs(key: str, logs: List[Dict])→ Dict[str, float]

fklearn.tuning.utils.gen_validator_log

fklearn.tuning.utils.get_avg_metric_from_extractor

fklearn.tuning.utils.get_best_performing_log(log_list: List[Dict[str, Any]], extractor:
Callable[[str], float], metric_name: str)→
Dict

fklearn.tuning.utils.get_used_features(log: Dict)→ List[str]

fklearn.tuning.utils.order_feature_importance_avg_from_logs(log: Dict) →
List[str]

Module contents

fklearn.types package

Submodules

fklearn.types.types module

Module contents

fklearn.validation package

Submodules

fklearn.validation.evaluators module

fklearn.validation.evaluators.auc_evaluator
Computes the ROC AUC score, given true label and prediction scores.

Parameters

• test_data (Pandas' DataFrame) – A Pandas’ DataFrame with target and prediction
scores.

48 Chapter 1. Contents

fklearn Documentation, Release 3.0.0

• prediction_column (Strings) – The name of the column in test_data with the pre-
diction scores.

• target_column (String) – The name of the column in test_data with the binary target.

• weight_column (String (default=None)) – The name of the column in
test_data with the sample weights.

• eval_name (String, optional (default=None)) – the name of the evaluator
as it will appear in the logs.

Returns log – A log-like dictionary with the ROC AUC Score

Return type dict

fklearn.validation.evaluators.brier_score_evaluator
Computes the Brier score, given true label and prediction scores.

Parameters

• test_data (Pandas' DataFrame) – A Pandas’ DataFrame with target and prediction
scores.

• prediction_column (Strings) – The name of the column in test_data with the pre-
diction scores.

• target_column (String) – The name of the column in test_data with the binary target.

• weight_column (String (default=None)) – The name of the column in
test_data with the sample weights.

• eval_name (String, optional (default=None)) – The name of the evaluator
as it will appear in the logs.

Returns log – A log-like dictionary with the Brier score.

Return type dict

fklearn.validation.evaluators.combined_evaluators
Combine partially applies evaluation functions.

Parameters

• test_data (Pandas' DataFrame) – A Pandas’ DataFrame to apply the evaluators on

• evaluators (List) – List of evaluator functions

Returns log – A log-like dictionary with the column mean

Return type dict

fklearn.validation.evaluators.correlation_evaluator
Computes the Pearson correlation between prediction and target.

Parameters

• test_data (Pandas' DataFrame) – A Pandas’ DataFrame with target and predic-
tion.

• prediction_column (Strings) – The name of the column in test_data with the pre-
diction.

• target_column (String) – The name of the column in test_data with the continuous
target.

• eval_name (String, optional (default=None)) – the name of the evaluator
as it will appear in the logs.

1.3. fklearn 49

fklearn Documentation, Release 3.0.0

Returns log – A log-like dictionary with the Pearson correlation

Return type dict

fklearn.validation.evaluators.expected_calibration_error_evaluator
Computes the expected calibration error (ECE), given true label and prediction scores. See “On Calibration of
Modern Neural Networks”(https://arxiv.org/abs/1706.04599) for more information.

The ECE is the distance between the actuals observed frequency and the predicted probabilities, for a given
choice of bins.

Perfect calibration results in a score of 0.

For example, if for the bin [0, 0.1] we have the three data points:

1. prediction: 0.1, actual: 0

2. prediction: 0.05, actual: 1

3. prediction: 0.0, actual 0

Then the predicted average is (0.1 + 0.05 + 0.00)/3 = 0.05, and the empirical frequency is (0 + 1 + 0)/3 = 1/3.
Therefore, the distance for this bin is:

|1/3 - 0.05| ~= 0.28.

Graphical intuition:

Actuals (empirical frequency between 0 and 1)
| *
| *
| *
______ Predictions (probabilties between 0 and 1)

Parameters

• test_data (Pandas' DataFrame) – A Pandas’ DataFrame with target and prediction
scores.

• prediction_column (Strings) – The name of the column in test_data with the pre-
diction scores.

• target_column (String) – The name of the column in test_data with the binary target.

• eval_name (String, optional (default=None)) – The name of the evaluator
as it will appear in the logs.

• n_bins (Int (default=100)) – The number of bins. This is a trade-off between the
number of points in each bin and the probability range they span. You want a small enough
range that still contains a significant number of points for the distance to work.

• bin_choice (String (default="count")) – Two possibilities: “count” for
equally populated bins (e.g. uses pandas.qcut for the bins) “prob” for equally spaced proba-
bilities (e.g. uses pandas.cut for the bins), with distance weighed by the number of samples
in each bin.

Returns log – A log-like dictionary with the expected calibration error.

Return type dict

fklearn.validation.evaluators.exponential_coefficient_evaluator
Computes the exponential coefficient between prediction and target. Finds a1 in the following equation target =
exp(a0 + a1 prediction)

50 Chapter 1. Contents

https://arxiv.org/abs/1706.04599

fklearn Documentation, Release 3.0.0

Parameters

• test_data (Pandas' DataFrame) – A Pandas’ DataFrame with with target and pre-
diction.

• prediction_column (Strings) – The name of the column in test_data with the pre-
diction.

• target_column (String) – The name of the column in test_data with the continuous
target.

• eval_name (String, optional (default=None)) – the name of the evaluator
as it will appear in the logs.

Returns log – A log-like dictionary with the exponential coefficient

Return type dict

fklearn.validation.evaluators.fbeta_score_evaluator
Computes the F-beta score, given true label and prediction scores.

Parameters

• test_data (pandas.DataFrame) – A Pandas’ DataFrame with target and prediction
scores.

• threshold (float) –

A threshold for the prediction column above which samples will be classified as 1

• beta (float) – The beta parameter determines the weight of precision in the combined
score. beta < 1 lends more weight to precision, while beta > 1 favors recall (beta -> 0
considers only precision, beta -> inf only recall).

• prediction_column (str) – The name of the column in test_data with the prediction
scores.

• target_column (str) – The name of the column in test_data with the binary target.

• weight_column (String (default=None)) – The name of the column in
test_data with the sample weights.

• eval_name (str, optional (default=None)) – the name of the evaluator as it
will appear in the logs.

Returns log – A log-like dictionary with the Precision Score

Return type dict

fklearn.validation.evaluators.generic_sklearn_evaluator(name_prefix: str,
sklearn_metric:
Callable[[...], float])
→ Callable[[...], Dict[str,
Union[float, Dict]]]

Returns an evaluator build from a metric from sklearn.metrics

Parameters

• name_prefix (str) – The default name of the evaluator will be name_prefix + tar-
get_column.

• sklearn_metric (Callable) – Metric function from sklearn.metrics. It should take
as parameters y_true, y_score, kwargs.

Returns eval_fn – An evaluator function that uses the provided metric

1.3. fklearn 51

fklearn Documentation, Release 3.0.0

Return type Callable

fklearn.validation.evaluators.hash_evaluator
Computes the hash of a pandas dataframe, filtered by hash columns. The purpose is to uniquely identify a
dataframe, to be able to check if two dataframes are equal or not.

Parameters

• test_data (Pandas' DataFrame) – A Pandas’ DataFrame to be hashed.

• hash_columns (List[str], optional (default=None)) – A list of column
names to filter the dataframe before hashing. If None, it will hash the dataframe with all the
columns

• eval_name (String, optional (default=None)) – the name of the evaluator
as it will appear in the logs.

• consider_index (bool, optional (default=False)) – If true, will consider
the index of the dataframe to calculate the hash. The default behaviour will ignore the index
and just hash the content of the features.

Returns log – A log-like dictionary with the hash of the dataframe

Return type dict

fklearn.validation.evaluators.linear_coefficient_evaluator
Computes the linear coefficient from regressing the outcome on the prediction

Parameters

• test_data (Pandas' DataFrame) – A Pandas’ DataFrame with with target and pre-
diction.

• prediction_column (Strings) – The name of the column in test_data with the pre-
diction.

• target_column (String) – The name of the column in test_data with the continuous
target.

• eval_name (String, optional (default=None)) – the name of the evaluator
as it will appear in the logs.

Returns log – A log-like dictionary with the linear coefficient from regressing the outcome on the
prediction

Return type dict

fklearn.validation.evaluators.logistic_coefficient_evaluator
Computes the logistic coefficient between prediction and target. Finds a1 in the following equation target =
logistic(a0 + a1 prediction)

Parameters

• test_data (Pandas' DataFrame) – A Pandas’ DataFrame with with target and pre-
diction.

• prediction_column (Strings) – The name of the column in test_data with the pre-
diction.

• target_column (String) – The name of the column in test_data with the continuous
target.

• eval_name (String, optional (default=None)) – the name of the evaluator
as it will appear in the logs.

52 Chapter 1. Contents

fklearn Documentation, Release 3.0.0

Returns log – A log-like dictionary with the logistic coefficient

Return type dict

fklearn.validation.evaluators.logloss_evaluator
Computes the logloss score, given true label and prediction scores.

Parameters

• test_data (Pandas' DataFrame) – A Pandas’ DataFrame with target and prediction
scores.

• prediction_column (Strings) – The name of the column in test_data with the pre-
diction scores.

• target_column (String) – The name of the column in test_data with the binary target.

• weight_column (String (default=None)) – The name of the column in
test_data with the sample weights.

• eval_name (String, optional (default=None)) – the name of the evaluator
as it will appear in the logs.

Returns log – A log-like dictionary with the logloss score.

Return type dict

fklearn.validation.evaluators.mean_prediction_evaluator
Computes mean for the specified column.

Parameters

• test_data (Pandas' DataFrame) – A Pandas’ DataFrame with a column to compute
the mean

• prediction_column (Strings) – The name of the column in test_data to compute
the mean.

• eval_name (String, optional (default=None)) – the name of the evaluator
as it will appear in the logs.

Returns log – A log-like dictionary with the column mean

Return type dict

fklearn.validation.evaluators.mse_evaluator
Computes the Mean Squared Error, given true label and predictions.

Parameters

• test_data (Pandas' DataFrame) – A Pandas’ DataFrame with target and predic-
tions.

• prediction_column (Strings) – The name of the column in test_data with the pre-
dictions.

• target_column (String) – The name of the column in test_data with the continuous
target.

• weight_column (String (default=None)) – The name of the column in
test_data with the sample weights.

• eval_name (String, optional (default=None)) – the name of the evaluator
as it will appear in the logs.

Returns log – A log-like dictionary with the MSE Score

1.3. fklearn 53

fklearn Documentation, Release 3.0.0

Return type dict

fklearn.validation.evaluators.ndcg_evaluator
Computes the Normalized Discount Cumulative Gain (NDCG) between of the original and predicted rankings:
https://en.wikipedia.org/wiki/Discounted_cumulative_gain

Parameters

• test_data (Pandas DataFrame) – A Pandas’ DataFrame with target and prediction
scores.

• prediction_column (String) – The name of the column in test_data with the pre-
diction scores.

• target_column (String) – The name of the column in test_data with the target.

• k (int, optional (default=None)) – The size of the rank that is used to fit (high-
est k scores) the NDCG score. If None, use all outputs. Otherwise, this value must be
between [1, len(test_data[prediction_column])].

• exponential_gain (bool (default=True)) – If False, then use the linear gain.
The exponential gain places a stronger emphasis on retrieving relevant items. If the rele-
vance of these items is binary values in {0,1}, then the two approaches are the same, which
is the linear case.

• eval_name (String, optional (default=None)) – The name of the evaluator
as it will appear in the logs.

Returns log – A log-like dictionary with the NDCG score, float in [0,1].

Return type dict

fklearn.validation.evaluators.permutation_evaluator
Permutation importance evaluator. It works by shuffling one or more features on test_data dataframe, getting
the preditions with predict_fn, and evaluating the results with eval_fn.

Parameters

• test_data (Pandas' DataFrame) – A Pandas’ DataFrame with target, predictions
and features.

• predict_fn (function DataFrame -> DataFrame) – Function that receives the
input dataframe and returns a dataframe with the pipeline predictions.

• eval_fn (function DataFrame -> Log Dict) – A partially applied evaluation
function.

• baseline (bool) – Also evaluates the predict_fn on an unshuffled baseline.

• features (List of strings) – The features to shuffle and then evaluate eval_fn on
the shuffled results. The default case shuffles all dataframe columns.

• shuffle_all_at_once (bool) – Shuffle all features at once instead of one per turn.

• random_state (int) – Seed to be used by the random number generator.

• eval_name (String, optional (default=None)) – the name of the evaluator
as it will appear in the logs.

Returns log – A log-like dictionary with evaluation results by feature shuffle. Use the permuta-
tion_extractor for better visualization of the results.

Return type dict

54 Chapter 1. Contents

https://en.wikipedia.org/wiki/Discounted_cumulative_gain

fklearn Documentation, Release 3.0.0

fklearn.validation.evaluators.pr_auc_evaluator
Computes the PR AUC score, given true label and prediction scores.

Parameters

• test_data (Pandas' DataFrame) – A Pandas’ DataFrame with target and prediction
scores.

• prediction_column (Strings) – The name of the column in test_data with the pre-
diction scores.

• target_column (String) – The name of the column in test_data with the binary target.

• weight_column (String (default=None)) – The name of the column in
test_data with the sample weights.

• eval_name (String, optional (default=None)) – the name of the evaluator
as it will appear in the logs.

Returns

Return type A log-like dictionary with the PR AUC Score

fklearn.validation.evaluators.precision_evaluator
Computes the precision score, given true label and prediction scores.

Parameters

• test_data (pandas.DataFrame) – A Pandas’ DataFrame with target and prediction
scores.

• threshold (float) –

A threshold for the prediction column above which samples will be classified as 1

• prediction_column (str) – The name of the column in test_data with the prediction
scores.

• target_column (str) – The name of the column in test_data with the binary target.

• weight_column (String (default=None)) – The name of the column in
test_data with the sample weights.

• eval_name (str, optional (default=None)) – the name of the evaluator as it
will appear in the logs.

Returns log – A log-like dictionary with the Precision Score

Return type dict

fklearn.validation.evaluators.r2_evaluator
Computes the R2 score, given true label and predictions.

Parameters

• test_data (Pandas' DataFrame) – A Pandas’ DataFrame with target and predic-
tion.

• prediction_column (Strings) – The name of the column in test_data with the pre-
diction.

• target_column (String) – The name of the column in test_data with the continuous
target.

• weight_column (String (default=None)) – The name of the column in
test_data with the sample weights.

1.3. fklearn 55

fklearn Documentation, Release 3.0.0

• eval_name (String, optional (default=None)) – the name of the evaluator
as it will appear in the logs.

Returns log – A log-like dictionary with the R2 Score

Return type dict

fklearn.validation.evaluators.recall_evaluator
Computes the recall score, given true label and prediction scores.

Parameters

• test_data (pandas.DataFrame) – A Pandas’ DataFrame with target and prediction
scores.

• threshold (float) –

A threshold for the prediction column above which samples will be classified as 1

• prediction_column (str) – The name of the column in test_data with the prediction
scores.

• target_column (str) – The name of the column in test_data with the binary target.

• weight_column (String (default=None)) – The name of the column in
test_data with the sample weights.

• eval_name (str, optional (default=None)) – the name of the evaluator as it
will appear in the logs.

Returns log – A log-like dictionary with the Precision Score

Return type dict

fklearn.validation.evaluators.roc_auc_evaluator
Computes the ROC AUC score, given true label and prediction scores.

Parameters

• test_data (Pandas' DataFrame) – A Pandas’ DataFrame with target and prediction
scores.

• prediction_column (Strings) – The name of the column in test_data with the pre-
diction scores.

• target_column (String) – The name of the column in test_data with the binary target.

• weight_column (String (default=None)) – The name of the column in
test_data with the sample weights.

• eval_name (String, optional (default=None)) – the name of the evaluator
as it will appear in the logs.

Returns log – A log-like dictionary with the ROC AUC Score

Return type dict

fklearn.validation.evaluators.spearman_evaluator
Computes the Spearman correlation between prediction and target. The Spearman correlation evaluates the rank
order between two variables: https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient

Parameters

• test_data (Pandas' DataFrame) – A Pandas’ DataFrame with target and predic-
tion.

56 Chapter 1. Contents

https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient

fklearn Documentation, Release 3.0.0

• prediction_column (Strings) – The name of the column in test_data with the pre-
diction.

• target_column (String) – The name of the column in test_data with the continuous
target.

• eval_name (String, optional (default=None)) – the name of the evaluator
as it will appear in the logs.

Returns log – A log-like dictionary with the Spearman correlation

Return type dict

fklearn.validation.evaluators.split_evaluator
Splits the dataset into the categories in split_col and evaluate model performance in each split. Useful when you
belive the model performs differs in a sub population defined by split_col.

Parameters

• test_data (Pandas' DataFrame) – A Pandas’ DataFrame with target and predic-
tions.

• eval_fn (function DataFrame -> Log Dict) – A partially applied evaluation
function.

• split_col (String) – The name of the column in test_data to split by.

• split_values (Array, optional (default=None)) – An Array to split by. If
not provided, test_data[split_col].unique() will be used.

• eval_name (String, optional (default=None)) – the name of the evaluator
as it will appear in the logs.

Returns log – A log-like dictionary with evaluation results by split.

Return type dict

fklearn.validation.evaluators.temporal_split_evaluator
Splits the dataset into the temporal categories by time_col and evaluate model performance in each split.

The splits are implicitly defined by the time_format. For example, for the default time format (“%Y-%m”), we
will split by year and month.

Parameters

• test_data (Pandas' DataFrame) – A Pandas’ DataFrame with target and predic-
tions.

• eval_fn (function DataFrame -> Log Dict) – A partially applied evaluation
function.

• time_col (string) – The name of the column in test_data to split by.

• time_format (string) – The way to format the time_col into temporal categories.

• split_values (Array of string, optional (default=None)) – An array
of date formatted strings to split the evaluation by. If not provided, all unique formatted dates
will be used.

• eval_name (String, optional (default=None)) – the name of the evaluator
as it will appear in the logs.

Returns log – A log-like dictionary with evaluation results by split.

Return type dict

1.3. fklearn 57

fklearn Documentation, Release 3.0.0

fklearn.validation.perturbators module

fklearn.validation.perturbators.nullify
Replace a percenteage of values in the input Series by np.nan

Parameters

• col (pd.Series) – A Pandas’ Series

• perc (float) – Percentage to be replaced by no.nan

Returns

Return type A transformed pd.Series

fklearn.validation.perturbators.perturbator
transforms specific columns of a dataset according to an artificial corruption function.

Parameters

• data (pandas.DataFrame) – A Pandas’ DataFrame

• cols (List[str]) – A list of columns to apply the corruption function

• corruption_fn (function pandas.Series -> pandas.Series) – An arbi-
trary corruption function

Returns

Return type A transformed dataset

fklearn.validation.perturbators.random_noise
Fit a gaussian to column, then sample and add to each entry with a magnification parameter

Parameters

• col (pd.Series) – A Pandas’ Series

• mag (float) – Multiplies the noise to control scaling

Returns

Return type A transformed pd.Series

fklearn.validation.perturbators.sample_columns
Helper function that picks randomly a percentage of the columns

Parameters

• data (pd.DataFrame) – A Pandas’ DataFrame

• perc (float) – Percentage of columns to be sampled

Returns

Return type A list of column names

fklearn.validation.perturbators.shift_mu
Shift the mean of column by a given percentage

Parameters

• col (pd.Series) – A Pandas’ Series

• perc (float) – How much to shift the mu percentually (can be negative)

Returns

Return type A transformed pd.Series

58 Chapter 1. Contents

fklearn Documentation, Release 3.0.0

fklearn.validation.splitters module

fklearn.validation.splitters.forward_stability_curve_time_splitter
Splits the data into temporal buckets with both the training and testing folds both moving forward. The folds
move forward by a fixed timedelta step. Optionally, there can be a gap between the end of the training period
and the start of the holdout period.

Similar to the stability curve time splitter, with the difference that the training period also moves forward with
each fold.

The clearest use case is to evaluate a periodic re-training framework.

Parameters

• train_data (pandas.DataFrame) – A Pandas’ DataFrame that will be split for sta-
bility curve estimation.

• training_time_start (datetime.datetime or str) – Date for the start of
the training period. If move_training_start_with_steps is True, each step will increase this
date by step.

• training_time_end (datetime.datetime or str) – Date for the end of the
training period. Each step increases this date by step.

• time_column (str) – The name of the Date column of train_data.

• holdout_gap (datetime.timedelta) – Timedelta of the gap between the end of the
training period and the start of the validation period.

• holdout_size (datetime.timedelta) – Timedelta of the range between the start
and the end of the holdout period.

• step (datetime.timedelta) – Timedelta that shifts both the training period and the
holdout period by this value.

• move_training_start_with_steps (bool) – If True, the training start date will
increase by step for each fold. If False, the training start date remains fixed at the train-
ing_time_start value.

Returns

• Folds (list of tuples) – A list of folds. Each fold is a Tuple of arrays. The fist array in each
tuple contains training indexes while the second array contains validation indexes.

• logs (list of dict) – A list of logs, one for each fold

fklearn.validation.splitters.k_fold_splitter
Makes K random train/test split folds for cross validation. The folds are made so that every sample is used at
least once for evaluating and K-1 times for training.

If stratified is set to True, the split preserves the distribution of stratify_column

Parameters

• train_data (pandas.DataFrame) – A Pandas’ DataFrame that will be split into K-
Folds for cross validation.

• n_splits (int) – The number of folds K for the K-Fold cross validation strategy.

• random_state (int) – Seed to be used by the random number generator.

• stratify_column (string) – Column name in train_data to be used for stratified
split.

Returns

1.3. fklearn 59

fklearn Documentation, Release 3.0.0

• Folds (list of tuples) – A list of folds. Each fold is a Tuple of arrays. The fist array in each
tuple contains training indexes while the second array contains validation indexes.

• logs (list of dict) – A list of logs, one for each fold

fklearn.validation.splitters.out_of_time_and_space_splitter
Makes K grouped train/test split folds for cross validation. The folds are made so that every ID is used at least
once for evaluating and K-1 times for training. Also, for each fold, evaluation will always be out-of-ID and
out-of-time.

Parameters

• train_data (pandas.DataFrame) – A Pandas’ DataFrame that will be split into K
out-of-time and ID folds for cross validation.

• n_splits (int) – The number of folds K for the K-Fold cross validation strategy.

• in_time_limit (str or datetime.datetime) – A String representing the end
time of the training data. It should be in the same format as the Date column in train_data.

• time_column (str) – The name of the Date column of train_data.

• space_column (str) – The name of the ID column of train_data.

• holdout_gap (datetime.timedelta) – Timedelta of the gap between the end of the
training period and the start of the validation period.

Returns

• Folds (list of tuples) – A list of folds. Each fold is a Tuple of arrays. The fist array in each
tuple contains training indexes while the second array contains validation indexes.

• logs (list of dict) – A list of logs, one for each fold

fklearn.validation.splitters.reverse_time_learning_curve_splitter
Splits the data into temporal buckets given by the specified frequency. Uses a fixed out-of-ID and time hold
out set for every fold. Training size increases per fold, with less recent data being added in each fold. Useful
for inverse learning curve validation, that is, for seeing how hold out performance increases as the training size
increases with less recent data.

Parameters

• train_data (pandas.DataFrame) – A Pandas’ DataFrame that will be split inverse
learning curve estimation.

• time_column (str) – The name of the Date column of train_data.

• training_time_limit (str) – The Date String for the end of the training period.
Should be of the same format as time_column.

• lower_time_limit (str) – A Date String for the begining of the training period. This
allows limiting the learning curve from bellow, avoiding heavy computation with very old
data.

• freq (str) – The temporal frequency. See: http://pandas.pydata.org/pandas-docs/stable/
timeseries.html#offset-aliases

• holdout_gap (datetime.timedelta) – Timedelta of the gap between the end of the
training period and the start of the validation period.

• min_samples (int) – The minimum number of samples required in the split to keep the
split.

Returns

60 Chapter 1. Contents

http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases

fklearn Documentation, Release 3.0.0

• Folds (list of tuples) – A list of folds. Each fold is a Tuple of arrays. The fist array in each
tuple contains training indexes while the second array contains validation indexes.

• logs (list of dict) – A list of logs, one for each fold

fklearn.validation.splitters.spatial_learning_curve_splitter
Splits the data for a spatial learning curve. Progressively adds more and more examples to the training in order
to verify the impact of having more data available on a validation set.

The validation set starts after the training set, with an optional time gap.

Similar to the temporal learning curves, but with spatial increases in the training set.

Parameters

• train_data (pandas.DataFrame) – A Pandas’ DataFrame that will be split for learn-
ing curve estimation.

• space_column (str) – The name of the ID column of train_data.

• time_column (str) – The name of the temporal column of train_data.

• training_limit (datetime or str) – The date limiting the training (after which
the holdout begins).

• holdout_gap (timedelta) – The gap between the end of training and the start of the
holdout. If you have censored data, use a gap similar to the censor time.

• train_percentages (list or tuple of floats) – A list containing the per-
centages of IDs to use in the training. Defaults to (0.25, 0.5, 0.75, 1.0). For example: For
the default value, there would be four model trainings, containing respectively 25%, 50%,
75%, and 100% of the IDs that are not part of the held out set.

• random_state (int) – A seed for the random number generator that shuffles the IDs.

Returns

• Folds (list of tuples) – A list of folds. Each fold is a Tuple of arrays. The fist array in each
tuple contains training indexes while the second array contains validation indexes.

• logs (list of dict) – A list of logs, one for each fold

fklearn.validation.splitters.stability_curve_time_in_space_splitter
Splits the data into temporal buckets given by the specified frequency. Training set is fixed before hold out and
uses a rolling window hold out set. Each fold moves the hold out further into the future. Useful to see how
model performance degrades as the training data gets more outdated. Folds are made so that ALL IDs in the
holdout also appear in the training set.

Parameters

• train_data (pandas.DataFrame) – A Pandas’ DataFrame that will be split for sta-
bility curve estimation.

• training_time_limit (str) – The Date String for the end of the testing period.
Should be of the same format as time_column.

• space_column (str) – The name of the ID column of train_data.

• time_column (str) – The name of the Date column of train_data.

• freq (str) – The temporal frequency. See: http://pandas.pydata.org/pandas-docs/stable/
timeseries.html#offset-aliases

• space_hold_percentage (float (default=0.5)) – The proportion of hold out
IDs.

1.3. fklearn 61

http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases

fklearn Documentation, Release 3.0.0

• random_state (int) – A seed for the random number generator for ID sampling across
train and hold out sets.

• min_samples (int) – The minimum number of samples required in the split to keep the
split.

Returns

• Folds (list of tuples) – A list of folds. Each fold is a Tuple of arrays. The fist array in each
tuple contains training indexes while the second array contains validation indexes.

• logs (list of dict) – A list of logs, one for each fold

fklearn.validation.splitters.stability_curve_time_space_splitter
Splits the data into temporal buckets given by the specified frequency. Training set is fixed before hold out and
uses a rolling window hold out set. Each fold moves the hold out further into the future. Useful to see how
model performance degrades as the training data gets more outdated. Folds are made so that NONE of the IDs
in the holdout appears in the training set.

Parameters

• train_data (pandas.DataFrame) – A Pandas’ DataFrame that will be split for sta-
bility curve estimation.

• training_time_limit (str) – The Date String for the end of the testing period.
Should be of the same format as time_column

• space_column (str) – The name of the ID column of train_data

• time_column (str) – The name of the Date column of train_data

• freq (str) – The temporal frequency. See: http://pandas.pydata.org/pandas-docs/stable/
timeseries.html#offset-aliases

• space_hold_percentage (float) – The proportion of hold out IDs

• random_state (int) – A seed for the random number generator for ID sampling across
train and hold out sets.

• min_samples (int) – The minimum number of samples required in the split to keep the
split.

Returns

• Folds (list of tuples) – A list of folds. Each fold is a Tuple of arrays. The fist array in each
tuple contains training indexes while the second array contains validation indexes.

• logs (list of dict) – A list of logs, one for each fold

fklearn.validation.splitters.stability_curve_time_splitter
Splits the data into temporal buckets given by the specified frequency. Training set is fixed before hold out and
uses a rolling window hold out set. Each fold moves the hold out further into the future. Useful to see how
model performance degrades as the training data gets more outdated. Training and holdout sets can have same
IDs

Parameters

• train_data (pandas.DataFrame) – A Pandas’ DataFrame that will be split for sta-
bility curve estimation.

• training_time_limit (str) – The Date String for the end of the testing period.
Should be of the same format as time_column.

• time_column (str) – The name of the Date column of train_data.

62 Chapter 1. Contents

http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases

fklearn Documentation, Release 3.0.0

• freq (str) – The temporal frequency. See: http://pandas.pydata.org/pandas-docs/stable/
timeseries.html#offset-aliases

• min_samples (int) – The minimum number of samples required in a split to keep it.

Returns

• Folds (list of tuples) – A list of folds. Each fold is a Tuple of arrays. The fist array in each
tuple contains training indexes while the second array contains validation indexes.

• logs (list of dict) – A list of logs, one for each fold

fklearn.validation.splitters.time_and_space_learning_curve_splitter
Splits the data into temporal buckets given by the specified frequency. Uses a fixed out-of-ID and time hold out
set for every fold. Training size increases per fold, with more recent data being added in each fold. Useful for
learning curve validation, that is, for seeing how hold out performance increases as the training size increases
with more recent data.

Parameters

• train_data (pandas.DataFrame) – A Pandas’ DataFrame that will be split for learn-
ing curve estimation.

• training_time_limit (str) – The Date String for the end of the testing period.
Should be of the same format as time_column.

• space_column (str) – The name of the ID column of train_data.

• time_column (str) – The name of the Date column of train_data.

• freq (str) – The temporal frequency. See: http://pandas.pydata.org/pandas-docs/stable/
timeseries.html#offset-aliases

• space_hold_percentage (float) – The proportion of hold out IDs.

• holdout_gap (datetime.timedelta) – Timedelta of the gap between the end of the
training period and the start of the validation period.

• random_state (int) – A seed for the random number generator for ID sampling across
train and hold out sets.

• min_samples (int) – The minimum number of samples required in the split to keep the
split.

Returns

• Folds (list of tuples) – A list of folds. Each fold is a Tuple of arrays. The fist array in each
tuple contains training indexes while the second array contains validation indexes.

• logs (list of dict) – A list of logs, one for each fold

fklearn.validation.splitters.time_learning_curve_splitter
Splits the data into temporal buckets given by the specified frequency.

Uses a fixed out-of-ID and time hold out set for every fold. Training size increases per fold, with more recent
data being added in each fold. Useful for learning curve validation, that is, for seeing how hold out performance
increases as the training size increases with more recent data.

Parameters

• train_data (pandas.DataFrame) – A Pandas’ DataFrame that will be split for learn-
ing curve estimation.

• training_time_limit (str) – The Date String for the end of the testing period.
Should be of the same format as time_column.

1.3. fklearn 63

http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases

fklearn Documentation, Release 3.0.0

• time_column (str) – The name of the Date column of train_data.

• freq (str) – The temporal frequency. See: http://pandas.pydata.org/pandas-docs/stable/
timeseries.html#offset-aliases

• holdout_gap (datetime.timedelta) – Timedelta of the gap between the end of the
training period and the start of the validation period.

• min_samples (int) – The minimum number of samples required in the split to keep the
split.

Returns

• Folds (list of tuples) – A list of folds. Each fold is a Tuple of arrays. The fist array in each
tuple contains training indexes while the second array contains validation indexes.

• logs (list of dict) – A list of logs, one for each fold

fklearn.validation.validator module

Module contents

Submodules

fklearn.common_docstrings module

fklearn.common_docstrings.learner_pred_fn_docstring(f_name: str, shap: bool = False)
→ str

fklearn.common_docstrings.learner_return_docstring(model_name: str)→ str

fklearn.version module

fklearn.version.version()→ str
Get package version

Returns version

Return type str

Module contents

1.4 Contributing

Table of contents:

• Where to start?

• Getting Help

• Working with the code

– Version control

– Fork

64 Chapter 1. Contents

http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases

fklearn Documentation, Release 3.0.0

– Development environment

* Creating the virtual environment

* Install the requirements

* First testing

* Creating a development branch

• Contribute with code

– Code standards

– Run tests

– Document your code

• Contribute with documentation

– Docstrings

– Documentation

– Build documentation

• Send your changes to Fklearn repo

– Commit your changes

– Push the changes

– Create a pull request

– When my code will be merged?

• Versioning

1.4.1 Where to start?

We love pull requests(and issues) from everyone. We recommend you to take a look at the project, follow the examples
before contribute with code.

By participating in this project, you agree to abide by our code of conduct.

1.4.2 Getting Help

If you found a bug or need a new feature, you can submit an issue.

If you would like to chat with other contributors to fklearn, consider joining the Gitter.

1.4.3 Working with the code

Now that you already understand how the project works, maybe it’s time to fix something, add and enhancement, or
write new documentation. It’s time to understand how we send contributions.

Version control

This project is hosted in Github, so to start contributing you will need an account, you can create one for free at Github
Signup. We use git as version control, so it’s good to understand the basics about git flows before sending new code.

1.4. Contributing 65

https://github.com/nubank/fklearn/issues
https://gitter.im/fklearn-python
https://github.com/nubank/fklearn
https://github.com/signup
https://github.com/signup

fklearn Documentation, Release 3.0.0

You can follow Github Help to understand how to work with git.

Fork

To write new code, you will interact with your own fork, so go to fklearn repo page, and hit the Fork button. This
will create a copy of our repository in your account. To clone the repository in your machine you can use the next
commands:

git clone git@github.com:your-username/fklearn.git
git remote add upstream https://github.com/nubank/fklearn.git

This will create a folder called fklearn and will connect to the upstream(main repo).

Development environment

We recommend you to create a virtual environment before starting to work with the code, after that you can ensure
that everything is working fine by running all tests locally before start writing any new code.

Creating the virtual environment

Use an ENV_DIR of you choice. We are using ~/venvs
python3 -m venv ~/venvs/fklearn-dev
source ~/venvs/fklearn-dev/activate

Install the requirements

This command will install all the test dependencies. To install the package you can follow the installation instructions.

python3 -m pip install -qe .[devel]

First testing

The following command should run all tests, if every test pass, you should be ready to start developing new stuff

python3 -m pytest tests/

Creating a development branch

First you should check that your master branch is up to date with the latest version of the upstream repository.

git checkout master
git pull upstream master --ff-only

git checkout -b name-of-your-bugfix-or-feature

If you already have a branch, and you want to update with the upstream master

66 Chapter 1. Contents

https://docs.github.com/en
https://github.com/nubank/fklearn
https://fklearn.readthedocs.io/en/latest/getting_started.html#installation

fklearn Documentation, Release 3.0.0

git checkout name-of-your-bugfix-or-feature
git fetch upstream
git merge upstream/master

1.4.4 Contribute with code

In this session we’ll guide you on how to contribute with the code. This is a guide which would help you if you want
to fix an issue or implement a new feature.

Code standards

This project is compatible only with python 3.6 to 3.9 and follows the pep8 style And we use this import formatting

In order to check if your code is following our codestyle, you can run from the root directory of the repo the next
commands:

python3 -m pip install -q flake8
python3 -m flake8 \

--ignore=E731,W503 \
--filename=*.py \
--exclude=__init__.py \
--show-source \
--statistics \
--max-line-length=120 \
src/ tests/

We also use mypy for type checking, which you can run with:

python3 -m mypy src tests --config mypy.ini

Run tests

After you finish your feature development or bug fix, you should run your tests, using:

python3 -m pytest tests/

Or if you want to run only one test:

python3 -m pytest tests/test-file-name.py::test_method_name

You must write tests for every feature always, you can look at the other tests to have a better idea how we implement
them. As test framework we use pytest

Document your code

All methods should have type annotations, this allow us to know what that method expect as parameters, and what is
the expected output. You can learn more about it in typing docs

To document your code you should add docstrings, all methods with docstring will appear in this documentation’s api
file. If you created a new file, you may need to add it to the api.rst following the structure

1.4. Contributing 67

https://www.python.org/dev/peps/pep-0008/
https://google.github.io/styleguide/pyguide.html?showone=Imports_formatting#313-imports-formatting
https://docs.pytest.org/en/latest/
https://docs.python.org/3.6/library/typing.html

fklearn Documentation, Release 3.0.0

Folder Name

File name (fklearn.folder_name.file_name)
###

..currentmodule:: fklearn.folder_name.file_name

.. autosummary::
method_name

The docstrings should follow this format

"""
Brief introduction of method

More info about it

Parameters

parameter_1 : type
Parameter description

Returns

value_1 : type
Value description

"""

1.4.5 Contribute with documentation

You can add, fix documentation of: code(docstrings) or this documentation files.

Docstrings

Follow the same structure we explained in code contribution

Documentation

This documentation is written using rst(reStructuredText) you can learn more about it in rst docs When you
make changes in the docs, please make sure, we still be able to build it without any issue.

Build documentation

From docs/ folder, install requirements.txt and run

make html

This command will build the documentation inside docs/build/html and you can check locally how it looks, and
if everything worked.

68 Chapter 1. Contents

https://fklearn.readthedocs.io/en/latest/contributing.html#document-your-code
http://docutils.sourceforge.net/rst.html

fklearn Documentation, Release 3.0.0

1.4.6 Send your changes to Fklearn repo

Commit your changes

You should think about a commit as a unit of change. So it should describe a small change you did in the project.

The following command will list all files you changed:

git status

To choose which files will be added to the commit:

git add path/to/the/file/name.extension

And to write a commit message:

This command will open your text editor to write commit messages

git commit

This will add a commit only with subject

git commit -m "My commit message"

We recommend this guide to write better commit messages

Push the changes

After you write all your commit messages, describing what you did, it’s time to send to your remote repo.

git push origin name-of-your-bugfix-or-feature

Create a pull request

Now that you already finished your job, you should: - Go to your repo’s Github page - Click New pull request
- Choose the branch you want to merge - Review the files that will be merged - Click Create pull request -
Fill the template - Tag your PR, add the category(bug, enhancement, documentation. . .) and a review-request label

When my code will be merged?

All code will be reviewed, we require at least one code owner review, and any other person review. We will usually do
weekly releases of the package if we have any new features, that are already reviewed.

1.4.7 Versioning

Use Semantic versioning to set library versions, more info: semver.org But basically this means:

1. MAJOR version when you make incompatible API changes,

2. MINOR version when you add functionality in a backwards-compatible manner, and

3. PATCH version when you make backwards-compatible bug fixes.

1.4. Contributing 69

https://chris.beams.io/posts/git-commit/
https://semver.org/

fklearn Documentation, Release 3.0.0

(from semver.org summary)

You don’t need to set the version in your PR, we’ll take care of this when we decide to release a new version. Today
the process is:

• Create a new milestone X.Y.Z (maintainers only)

• Some PR/issues are attributed to this new milestone

• Merge all the related PRs (maintainers only)

• Create a new PR: Bump package to X.Y.Z This PR update the version and the change log (maintainers
only)

• Create a tag X.Y.Z (maintainers only)

This last step will trigger the CI to build the package and send the version to pypi

When we add new functionality, the past version will be moved to another branch. For example, if we’re at version
1.13.7 and a new functionality is implemented, we create a new branch 1.13.x, and protect it(this way we can’t
delete it), the new code is merged to master branch, and them we create the tag 1.14.0

This way we can always fix a past version, opening PRs from 1.13.x branch.

70 Chapter 1. Contents

Python Module Index

f
fklearn, 64
fklearn.causal, 14
fklearn.causal.debias, 11
fklearn.causal.effects, 13
fklearn.causal.validation, 11
fklearn.causal.validation.auc, 6
fklearn.causal.validation.cate, 7
fklearn.causal.validation.curves, 8
fklearn.common_docstrings, 64
fklearn.data, 15
fklearn.data.datasets, 14
fklearn.metrics, 15
fklearn.metrics.pd_extractors, 15
fklearn.preprocessing, 19
fklearn.preprocessing.rebalancing, 16
fklearn.preprocessing.schema, 16
fklearn.preprocessing.splitting, 17
fklearn.training, 44
fklearn.training.calibration, 19
fklearn.training.classification, 20
fklearn.training.ensemble, 24
fklearn.training.imputation, 26
fklearn.training.pipeline, 27
fklearn.training.regression, 27
fklearn.training.transformation, 33
fklearn.training.unsupervised, 43
fklearn.training.utils, 44
fklearn.tuning, 48
fklearn.tuning.model_agnostic_fc, 44
fklearn.tuning.samplers, 45
fklearn.tuning.stoppers, 46
fklearn.tuning.utils, 48
fklearn.types, 48
fklearn.types.types, 48
fklearn.validation, 64
fklearn.validation.evaluators, 48
fklearn.validation.perturbators, 58
fklearn.validation.splitters, 59

fklearn.version, 64

71

fklearn Documentation, Release 3.0.0

72 Python Module Index

Index

A
aggregate_stop_funcs() (in module fk-

learn.tuning.stoppers), 46
apply_replacements() (in module fk-

learn.training.transformation), 33
area_under_the_cumulative_effect_curve

(in module fklearn.causal.validation.auc), 6
area_under_the_cumulative_gain_curve (in

module fklearn.causal.validation.auc), 6
area_under_the_relative_cumulative_gain_curve

(in module fklearn.causal.validation.auc), 7
auc_evaluator (in module fk-

learn.validation.evaluators), 48

B
brier_score_evaluator (in module fk-

learn.validation.evaluators), 49
build_pipeline() (in module fk-

learn.training.pipeline), 27

C
capper() (in module fklearn.training.transformation),

33
catboost_classification_learner (in mod-

ule fklearn.training.classification), 20
catboost_regressor_learner (in module fk-

learn.training.regression), 27
cate_mean_by_bin() (in module fk-

learn.causal.validation.cate), 7
cate_mean_by_bin_meta_evaluator (in mod-

ule fklearn.causal.validation.cate), 8
column_duplicatable() (in module fk-

learn.preprocessing.schema), 16
combined_evaluator_extractor (in module fk-

learn.metrics.pd_extractors), 15
combined_evaluators (in module fk-

learn.validation.evaluators), 49
correlation_evaluator (in module fk-

learn.validation.evaluators), 49

correlation_feature_selection (in module
fklearn.tuning.model_agnostic_fc), 44

count_categorizer() (in module fk-
learn.training.transformation), 33

cumulative_effect_curve (in module fk-
learn.causal.validation.curves), 8

cumulative_gain_curve (in module fk-
learn.causal.validation.curves), 9

custom_supervised_model_learner (in mod-
ule fklearn.training.regression), 28

custom_transformer() (in module fk-
learn.training.transformation), 34

D
debias_with_double_ml (in module fk-

learn.causal.debias), 11
debias_with_fixed_effects (in module fk-

learn.causal.debias), 11
debias_with_regression (in module fk-

learn.causal.debias), 12
debias_with_regression_formula (in module

fklearn.causal.debias), 12
discrete_ecdfer (in module fk-

learn.training.transformation), 35

E
ecdfer (in module fklearn.training.transformation), 35
effect_by_segment (in module fk-

learn.causal.validation.curves), 9
effect_curves (in module fk-

learn.causal.validation.curves), 10
elasticnet_regression_learner (in module

fklearn.training.regression), 29
evaluator_extractor (in module fk-

learn.metrics.pd_extractors), 15
expand_features_encoded() (in module fk-

learn.training.utils), 44
expected_calibration_error_evaluator (in

module fklearn.validation.evaluators), 50

73

fklearn Documentation, Release 3.0.0

exponential_coefficient_effect (in module
fklearn.causal.effects), 13

exponential_coefficient_evaluator (in
module fklearn.validation.evaluators), 50

extract (in module fklearn.metrics.pd_extractors), 15
extract_base_iteration (in module fk-

learn.metrics.pd_extractors), 15
extract_lc (in module fk-

learn.metrics.pd_extractors), 15
extract_param_tuning_iteration (in module

fklearn.metrics.pd_extractors), 15
extract_reverse_lc (in module fk-

learn.metrics.pd_extractors), 15
extract_sc (in module fk-

learn.metrics.pd_extractors), 15
extract_tuning (in module fk-

learn.metrics.pd_extractors), 15

F
fbeta_score_evaluator (in module fk-

learn.validation.evaluators), 51
feature_duplicator (in module fk-

learn.preprocessing.schema), 16
find_thresholds_with_same_risk (in module

fklearn.training.calibration), 19
fklearn (module), 64
fklearn.causal (module), 14
fklearn.causal.debias (module), 11
fklearn.causal.effects (module), 13
fklearn.causal.validation (module), 11
fklearn.causal.validation.auc (module), 6
fklearn.causal.validation.cate (module), 7
fklearn.causal.validation.curves (mod-

ule), 8
fklearn.common_docstrings (module), 64
fklearn.data (module), 15
fklearn.data.datasets (module), 14
fklearn.metrics (module), 15
fklearn.metrics.pd_extractors (module), 15
fklearn.preprocessing (module), 19
fklearn.preprocessing.rebalancing (mod-

ule), 16
fklearn.preprocessing.schema (module), 16
fklearn.preprocessing.splitting (module),

17
fklearn.training (module), 44
fklearn.training.calibration (module), 19
fklearn.training.classification (module),

20
fklearn.training.ensemble (module), 24
fklearn.training.imputation (module), 26
fklearn.training.pipeline (module), 27
fklearn.training.regression (module), 27

fklearn.training.transformation (module),
33

fklearn.training.unsupervised (module), 43
fklearn.training.utils (module), 44
fklearn.tuning (module), 48
fklearn.tuning.model_agnostic_fc (mod-

ule), 44
fklearn.tuning.samplers (module), 45
fklearn.tuning.stoppers (module), 46
fklearn.tuning.utils (module), 48
fklearn.types (module), 48
fklearn.types.types (module), 48
fklearn.validation (module), 64
fklearn.validation.evaluators (module), 48
fklearn.validation.perturbators (module),

58
fklearn.validation.splitters (module), 59
fklearn.version (module), 64
floorer() (in module fk-

learn.training.transformation), 35
forward_stability_curve_time_splitter

(in module fklearn.validation.splitters), 59

G
gen_dict_extract() (in module fk-

learn.tuning.utils), 48
gen_key_avgs_from_dicts() (in module fk-

learn.tuning.utils), 48
gen_key_avgs_from_iteration() (in module

fklearn.tuning.utils), 48
gen_key_avgs_from_logs() (in module fk-

learn.tuning.utils), 48
gen_validator_log (in module fk-

learn.tuning.utils), 48
generic_sklearn_evaluator() (in module fk-

learn.validation.evaluators), 51
get_avg_metric_from_extractor (in module

fklearn.tuning.utils), 48
get_best_performing_log() (in module fk-

learn.tuning.utils), 48
get_used_features() (in module fk-

learn.tuning.utils), 48
gp_regression_learner (in module fk-

learn.training.regression), 29

H
hash_evaluator (in module fk-

learn.validation.evaluators), 52

I
imputer (in module fklearn.training.imputation), 26
isolation_forest_learner (in module fk-

learn.training.unsupervised), 43

74 Index

fklearn Documentation, Release 3.0.0

isotonic_calibration_learner (in module fk-
learn.training.calibration), 19

K
k_fold_splitter (in module fk-

learn.validation.splitters), 59

L
label_categorizer() (in module fk-

learn.training.transformation), 36
learner_pred_fn_docstring() (in module fk-

learn.common_docstrings), 64
learner_return_docstring() (in module fk-

learn.common_docstrings), 64
learning_curve_evaluator_extractor (in

module fklearn.metrics.pd_extractors), 15
lgbm_classification_learner (in module fk-

learn.training.classification), 21
lgbm_regression_learner (in module fk-

learn.training.regression), 30
linear_coefficient_evaluator (in module fk-

learn.validation.evaluators), 52
linear_effect (in module fklearn.causal.effects), 13
linear_regression_learner (in module fk-

learn.training.regression), 31
log_learner_time (in module fk-

learn.training.utils), 44
logistic_classification_learner (in mod-

ule fklearn.training.classification), 22
logistic_coefficient_effect (in module fk-

learn.causal.effects), 13
logistic_coefficient_evaluator (in module

fklearn.validation.evaluators), 52
logloss_evaluator (in module fk-

learn.validation.evaluators), 53

M
make_confounded_data() (in module fk-

learn.data.datasets), 14
make_tutorial_data() (in module fk-

learn.data.datasets), 15
mean_prediction_evaluator (in module fk-

learn.validation.evaluators), 53
missing_warner (in module fk-

learn.training.transformation), 37
mse_evaluator (in module fk-

learn.validation.evaluators), 53

N
ndcg_evaluator (in module fk-

learn.validation.evaluators), 54
nlp_logistic_classification_learner (in

module fklearn.training.classification), 23

null_injector (in module fk-
learn.training.transformation), 37

nullify (in module fklearn.validation.perturbators),
58

O
onehot_categorizer() (in module fk-

learn.training.transformation), 37
order_feature_importance_avg_from_logs()

(in module fklearn.tuning.utils), 48
out_of_time_and_space_splitter (in module

fklearn.validation.splitters), 60

P
pearson_effect (in module fklearn.causal.effects),

14
permutation_evaluator (in module fk-

learn.validation.evaluators), 54
permutation_extractor (in module fk-

learn.metrics.pd_extractors), 15
perturbator (in module fk-

learn.validation.perturbators), 58
placeholder_imputer (in module fk-

learn.training.imputation), 26
pr_auc_evaluator (in module fk-

learn.validation.evaluators), 54
precision_evaluator (in module fk-

learn.validation.evaluators), 55
prediction_ranger (in module fk-

learn.training.transformation), 38
print_learner_run (in module fk-

learn.training.utils), 44

Q
quantile_biner() (in module fk-

learn.training.transformation), 39

R
r2_evaluator (in module fk-

learn.validation.evaluators), 55
random_noise (in module fk-

learn.validation.perturbators), 58
rank_categorical() (in module fk-

learn.training.transformation), 39
rebalance_by_categorical (in module fk-

learn.preprocessing.rebalancing), 16
rebalance_by_continuous (in module fk-

learn.preprocessing.rebalancing), 16
recall_evaluator (in module fk-

learn.validation.evaluators), 56
relative_cumulative_gain_curve (in module

fklearn.causal.validation.curves), 10
remove_by_feature_importance (in module fk-

learn.tuning.samplers), 45

Index 75

fklearn Documentation, Release 3.0.0

remove_by_feature_shuffling (in module fk-
learn.tuning.samplers), 45

remove_features_subsets (in module fk-
learn.tuning.samplers), 46

repeat_split_log (in module fk-
learn.metrics.pd_extractors), 15

reverse_learning_curve_evaluator_extractor
(in module fklearn.metrics.pd_extractors), 15

reverse_time_learning_curve_splitter (in
module fklearn.validation.splitters), 60

roc_auc_evaluator (in module fk-
learn.validation.evaluators), 56

S
sample_columns (in module fk-

learn.validation.perturbators), 58
selector (in module fklearn.training.transformation),

40
shift_mu (in module fklearn.validation.perturbators),

58
space_time_split_dataset (in module fk-

learn.preprocessing.splitting), 17
spatial_learning_curve_splitter (in mod-

ule fklearn.validation.splitters), 61
spearman_effect (in module fklearn.causal.effects),

14
spearman_evaluator (in module fk-

learn.validation.evaluators), 56
split_evaluator (in module fk-

learn.validation.evaluators), 57
split_evaluator_extractor (in module fk-

learn.metrics.pd_extractors), 15
split_evaluator_extractor_iteration (in

module fklearn.metrics.pd_extractors), 15
stability_curve_evaluator_extractor (in

module fklearn.metrics.pd_extractors), 15
stability_curve_time_in_space_splitter

(in module fklearn.validation.splitters), 61
stability_curve_time_space_splitter (in

module fklearn.validation.splitters), 62
stability_curve_time_splitter (in module

fklearn.validation.splitters), 62
standard_scaler() (in module fk-

learn.training.transformation), 40
stop_by_iter_num (in module fk-

learn.tuning.stoppers), 46
stop_by_no_improvement (in module fk-

learn.tuning.stoppers), 46
stop_by_no_improvement_parallel (in mod-

ule fklearn.tuning.stoppers), 47
stop_by_num_features (in module fk-

learn.tuning.stoppers), 47
stop_by_num_features_parallel (in module

fklearn.tuning.stoppers), 47

stratified_split_dataset (in module fk-
learn.preprocessing.splitting), 18

T
target_categorizer() (in module fk-

learn.training.transformation), 41
temporal_split_evaluator (in module fk-

learn.validation.evaluators), 57
temporal_split_evaluator_extractor (in

module fklearn.metrics.pd_extractors), 15
time_and_space_learning_curve_splitter

(in module fklearn.validation.splitters), 63
time_learning_curve_splitter (in module fk-

learn.validation.splitters), 63
time_split_dataset (in module fk-

learn.preprocessing.splitting), 18
truncate_categorical() (in module fk-

learn.training.transformation), 42

V
value_mapper() (in module fk-

learn.training.transformation), 43
variance_feature_selection (in module fk-

learn.tuning.model_agnostic_fc), 44
version() (in module fklearn.version), 64

X
xgb_classification_learner (in module fk-

learn.training.classification), 23
xgb_octopus_classification_learner (in

module fklearn.training.ensemble), 24
xgb_regression_learner (in module fk-

learn.training.regression), 32

76 Index

	Contents
	Python Module Index
	Index

