

fklearn

fklearn uses functional programming principles to make it easier to solve real problems with Machine Learning.

The name is a reference to the widely known scikit-learn [https://scikit-learn.org/stable/] library.

fklearn Principles

	Validation should reflect real-life situations.

	Production models should match validated models.

	Models should be production-ready with few extra steps.

	Reproducibility and in-depth analysis of model results should be easy to achieve.

Contents

	Getting started

	Examples

	API

	Contributing

Getting started

Installation

The fklearn library is Python 3.6 compatible only. In order to install it using pip, run:

pip install fklearn

You can also install from the source:

clone the repository
$ git clone -b master https://github.com/nubank/fklearn.git --depth=1

open the folder
$ cd fklearn

install the dependencies
$ pip install -e .

If you are a MacOs user, you may need to install some dependencies in order to use LGBM. If you have brew installed,
run the following command from the root dir:

brew bundle

Basics

Learners

While in scikit-learn the main abstraction for a model is a class with the methods fit and transform,
in fklearn we use what we call a learner function. A learner function takes in some training data (plus other parameters),
learns something from it and returns three things: a prediction function, the transformed training data, and a log.

The prediction function always has the same signature: it takes in a Pandas dataframe and returns a Pandas dataframe.
It should be able to take in any new dataframe, as long as it contains the required columns, and transform it. The tranform in the fklearn library is equivalent to the transform method of the scikit-learn.
In this case, the prediction function simply creates a new column with the predictions of the linear regression model that was trained.

The transformed training data is usually just the prediction function applied to the training data. It is useful when you want predictions on your training set, or for building pipelines, as we’ll see later.

The log is a dictionary, and can include any information that is relevant for inspecting or debugging the learner, e.g., what features were used, how many samples there were in the training set, feature importance or coefficients.

Learner functions are usually partially initialized (curried) before being passed to pipelines or applied to data:

from fklearn.training.regression import linear_regression_learner
from fklearn.training.transformation import capper, floorer, prediction_ranger

initialize several learner functions
capper_fn = capper(columns_to_cap=["income"], precomputed_caps={"income": 50,000})
regression_fn = linear_regression_learner(features=["income", "bill_amount"], target="spend")
ranger_fn = prediction_ranger(prediction_min=0.0, prediction_max=20000.0)

apply one individually to some data
p, df, log = regression_fn(training_data)

Available learner functions in fklearn can be found inside the fklearn.training module.

Pipelines

Learner functions are usually composed into pipelines that apply them in order to data:

from fklearn.training.pipeline import build_pipeline

learner = build_pipeline(capper_fn, regression_fn, ranger_fn)
predict_fn, training_predictions, logs = learner(train_data)

Pipelines behave exactly as individual learner functions. They guarantee that all steps are applied consistently to both traning and testing/production data.

Validation

Once we have our pipeline defined, we can use fklearn’s validation tools to evaluate the performance of our model in different scenarios and using multiple metrics:

from fklearn.validation.evaluators import r2_evaluator, spearman_evaluator, combined_evaluators
from fklearn.validation.validator import validator
from fklearn.validation.splitters import k_fold_splitter, stability_curve_time_splitter

evaluation_fn = combined_evaluators(evaluators=[r2_evaluator(target_column="spend"),
 spearman_evaluator(target_column="spend")])

cv_split_fn = k_fold_splitter(n_splits=3, random_state=42)
stability_split_fn = stability_curve_time_splitter(training_time_limit=pd.to_datetime("2018-01-01"),
 time_column="timestamp")

cross_validation_results = validator(train_data=train_data,
 split_fn=cv_split_fn,
 train_fn=learner,
 eval_fn=evaluation_fn)

stability_validation_results = validator(train_data=train_data,
 split_fn=stability_split_fn,
 train_fn=learner,
 eval_fn=evaluation_fn)

The validator function receives some data, the learner function with our model plus the following:
1. A splitting function: these can be found inside the fklearn.validation.splitters module. They split the data into training and evaluation folds in different ways, simulating situations where training and testing data differ.
2. A evaluation function: these can be found inside the fklearn.validation.evaluators module. They compute various performance metrics of interest on our model’s predictions. They can be composed by using combined_evaluators for example.

Learn More

	Check this jupyter notebook [https://github.com/nubank/fklearn/blob/master/docs/source/examples/regression.ipynb] for some additional examples.

	Our blog post [https://medium.com/building-nubank/introducing-fklearn-nubanks-machine-learning-library-part-i-2a1c781035d0] (Part I) gives an overview of the library and motivation behind it.

Examples

In this section we present practical examples to demonstrate various
fklearn features.

List of examples

	Learning Curves

	NLP Classification

	Training and Evaluating Simple Regression Model

	Causal Inference

	
	doc

	fklearn_overview

	
	doc

	fklearn_overview_dataset_generation

API

This is a list with all relevant fklearn functions. Docstrings should provide enough information
in order to understand any individual function.

Preprocessing

Rebalancing (fklearn.preprocessing.rebalancing)

	rebalance_by_categorical

	Resample dataset so that the result contains the same number of lines per category in categ_column.

	rebalance_by_continuous

	Resample dataset so that the result contains the same number of lines per bucket in a continuous column.

Splitting (fklearn.preprocessing.splitting)

	space_time_split_dataset

	Splits panel data using both ID and Time columns, resulting in four datasets

	time_split_dataset

	Splits temporal data into a training and testing datasets such that all training data comes before the testings one.

Training

Calibration (fklearn.training.calibration)

	isotonic_calibration_learner

	Fits a single feature isotonic regression to the dataset.

Classification (fklearn.training.classification)

	lgbm_classification_learner

	Fits an LGBM classifier to the dataset.

	logistic_classification_learner

	Fits an logistic regression classifier to the dataset.

	nlp_logistic_classification_learner

	Fits a text vectorizer (TfidfVectorizer) followed by a logistic regression (LogisticRegression).

	xgb_classification_learner

	Fits an XGBoost classifier to the dataset.

Ensemble (fklearn.training.ensemble)

	xgb_octopus_classification_learner

	Octopus ensemble allows you to inject domain specific knowledge to force a split in an initial feature, instead of assuming the tree model will do that intelligent split on its own.

Imputation (fklearn.training.imputation)

	imputer

	Fits a missing value imputer to the dataset.

	placeholder_imputer

	Fills missing values with a fixed value.

Pipeline (fklearn.training.pipeline)

	build_pipeline(*learners, has_repeated_learners)

	Builds a pipeline of different chained learners functions with the possibility of using keyword arguments in the predict functions of the pipeline.

Regression (fklearn.training.regression)

	gp_regression_learner

	Fits an gaussian process regressor to the dataset.

	lgbm_regression_learner

	Fits an LGBM regressor to the dataset.

	linear_regression_learner

	Fits an linear regression classifier to the dataset.

	xgb_regression_learner

	Fits an XGBoost regressor to the dataset.

Transformation (fklearn.training.transformation)

	apply_replacements(df, columns, vec, Dict], …)

	Base function to apply the replacements values found on the “vec” vectors into the df DataFrame.

	capper

	Learns the maximum value for each of the columns_to_cap and used that as the cap for those columns.

	count_categorizer

	Replaces categorical variables by count.

	custom_transformer

	Applies a custom function to the desired columns.

	discrete_ecdfer

	Learns an Empirical Cumulative Distribution Function from the specified column in the input DataFrame.

	ecdfer

	Learns an Empirical Cumulative Distribution Function from the specified column in the input DataFrame.

	floorer

	Learns the minimum value for each of the columns_to_floor and used that as the floot for those columns.

	label_categorizer

	Replaces categorical variables with a numeric identifier.

	missing_warner

	Creates a new column to warn about rows that columns that don’t have missing in the training set but have missing on the scoring

	null_injector

	Applies a custom function to the desired columns.

	onehot_categorizer

	Onehot encoding on categorical columns.

	prediction_ranger

	Caps and floors the specified prediction column to a set range.

	quantile_biner

	Discretize continuous numerical columns into its quantiles.

	rank_categorical

	Rank categorical features by their frequency in the train set.

	selector

	Filters a DataFrames by selecting only the desired columns.

	standard_scaler

	Fits a standard scaler to the dataset.

	target_categorizer

	Replaces categorical variables with the smoothed mean of the target variable by category.

	truncate_categorical

	Truncate infrequent categories and replace them by a single one.

	value_mapper

	Map values in selected columns in the DataFrame according to dictionaries of replacements.

Unsupervised (fklearn.training.unsupervised)

	isolation_forest_learner

	Fits an anomaly detection algorithm (Isolation Forest) to the dataset

Tuning

Model Agnostic Feature Choice (fklearn.tuning.model_agnostic_fc)

	correlation_feature_selection

	Feature selection based on correlation

	variance_feature_selection

	Feature selection based on variance

Parameter Tuning (fklearn.tuning.parameter_tuners)

	grid_search_cv

	Runs several training functions with each run taken from the parameter space

	random_search_tuner

	Runs several training functions with each run taken from the parameter space

	seed([seed])

	Seed the generator.

Samplers (fklearn.tuning.samplers)

	remove_by_feature_importance

	Performs feature selection based on feature importance

	remove_by_feature_shuffling

	Performs feature selection based on the evaluation of the test vs the evaluation of the test with randomly shuffled features

	remove_features_subsets

	Performs feature selection based on the best performing model out of several trained models

Selectors (fklearn.tuning.selectors)

	backward_subset_feature_selection(…)

	Performs train-evaluation iterations while testing the subsets of features to compute statistics about the importance of each feature category

	feature_importance_backward_selection(…)

	Performs train-evaluation iterations while subsampling the used features to compute statistics about feature relevance

	poor_man_boruta_selection(train_data, …)

	Performs train-evaluation iterations while shuffiling the used features to compute statistics about feature relevance

Stoppers (fklearn.tuning.stoppers)

	aggregate_stop_funcs(*stop_funcs)

	Aggregate stop functions

	stop_by_iter_num

	Checks for logs to see if feature selection should stop

	stop_by_no_improvement

	Checks for logs to see if feature selection should stop

	stop_by_no_improvement_parallel

	Checks for logs to see if feature selection should stop

	stop_by_num_features

	Checks for logs to see if feature selection should stop

	stop_by_num_features_parallel

	Selects the best log out of a list to see if feature selection should stop

Validation

Evaluators (fklearn.validation.evaluators)

	roc_auc_evaluator

	Computes the ROC AUC score, given true label and prediction scores.

	pr_auc_evaluator

	Computes the PR AUC score, given true label and prediction scores.

	brier_score_evaluator

	Computes the Brier score, given true label and prediction scores.

	combined_evaluators

	Combine partially applies evaluation functions.

	correlation_evaluator

	Computes the Pearson correlation between prediction and target.

	expected_calibration_error_evaluator

	Computes the expected calibration error (ECE), given true label and prediction scores.

	fbeta_score_evaluator

	Computes the F-beta score, given true label and prediction scores.

	generic_sklearn_evaluator(name_prefix, …)

	Returns an evaluator build from a metric from sklearn.metrics

	hash_evaluator

	Computes the hash of a pandas dataframe, filtered by hash columns.

	logloss_evaluator

	Computes the logloss score, given true label and prediction scores.

	mean_prediction_evaluator

	Computes mean for the specified column.

	mse_evaluator

	Computes the Mean Squared Error, given true label and predictions.

	permutation_evaluator

	Permutation importance evaluator.

	precision_evaluator

	Computes the precision score, given true label and prediction scores.

	r2_evaluator

	Computes the R2 score, given true label and predictions.

	recall_evaluator

	Computes the recall score, given true label and prediction scores.

	spearman_evaluator

	Computes the Spearman correlation between prediction and target.

	ndcg_evaluator

	Computes the Normalized Discount Cumulative Gain (NDCG) between of the original and predicted rankings: https://en.wikipedia.org/wiki/Discounted_cumulative_gain

	split_evaluator

	Splits the dataset into the categories in split_col and evaluate model performance in each split.

	temporal_split_evaluator

	Splits the dataset into the temporal categories by time_col and evaluate model performance in each split.

Splitters (fklearn.validation.splitters)

	forward_stability_curve_time_splitter

	Splits the data into temporal buckets with both the training and testing folds both moving forward.

	k_fold_splitter

	Makes K random train/test split folds for cross validation.

	out_of_time_and_space_splitter

	Makes K grouped train/test split folds for cross validation.

	reverse_time_learning_curve_splitter

	Splits the data into temporal buckets given by the specified frequency.

	spatial_learning_curve_splitter

	Splits the data for a spatial learning curve.

	stability_curve_time_in_space_splitter

	Splits the data into temporal buckets given by the specified frequency.

	stability_curve_time_space_splitter

	Splits the data into temporal buckets given by the specified frequency.

	stability_curve_time_splitter

	Splits the data into temporal buckets given by the specified frequency.

	time_and_space_learning_curve_splitter

	Splits the data into temporal buckets given by the specified frequency.

	time_learning_curve_splitter

	Splits the data into temporal buckets given by the specified frequency.

Validator (fklearn.validation.validator)

	parallel_validator

	Splits the training data into folds given by the split function and performs a train-evaluation sequence on each fold.

	validator

	Splits the training data into folds given by the split function and performs a train-evaluation sequence on each fold by calling validator_iteration.

	validator_iteration(data, train_index, …)

	Perform an iteration of train test split, training and evaluation.

Definitions

	
fklearn.data.datasets.make_confounded_data(n: int) → Tuple[pandas.core.frame.DataFrame, pandas.core.frame.DataFrame, pandas.core.frame.DataFrame]

	Generates fake data for counterfactual experimentation. The covariants are
sex, age and severity, the treatment is a binary variable, medication and the response
days until recovery.

	Parameters

	n (int) – The number of samples to generate

	Returns

	
	df_rnd (pd.DataFrame) – A dataframe where the treatment is randomly assigned.

	df_obs (pd.DataFrame) – A dataframe with confounding.

	df_df (pd.DataFrame) – A counter factual dataframe with confounding. Same as df_obs, but
with the treatment flipped.

	
fklearn.data.datasets.make_tutorial_data(n: int) → pandas.core.frame.DataFrame

	Generates fake data for a tutorial. There are 3 numerical features (“num1”, “num3” and “num3”)
and tow categorical features (“cat1” and “cat2”)
sex, age and severity, the treatment is a binary variable, medication and the response
days until recovery.

	Parameters

	n (int) – The number of samples to generate

	Returns

	df – A tutorial dataset

	Return type

	pd.DataFrame

	
fklearn.preprocessing.rebalancing.rebalance_by_categorical

	Resample dataset so that the result contains the same number of lines per category in categ_column.

	Parameters

	
	dataset (pandas.DataFrame) – A Pandas’ DataFrame with an categ_column column

	categ_column (str) – The name of the categorical column

	max_lines_by_categ (int (default None)) – The maximum number of lines by category. If None it will be set to the number of lines for the smallest category

	seed (int (default 1)) – Random state for consistency.

	Returns

	rebalanced_dataset – A dataset with fewer lines than dataset, but with the same number of lines per category in categ_column

	Return type

	pandas.DataFrame

	
fklearn.preprocessing.rebalancing.rebalance_by_continuous

	Resample dataset so that the result contains the same number of lines per bucket in a continuous column.

	Parameters

	
	dataset (pandas.DataFrame) – A Pandas’ DataFrame with an categ_column column

	continuous_column (str) – The name of the continuous column

	buckets (int) – The number of buckets to split the continuous column into

	max_lines_by_categ (int (default None)) – The maximum number of lines by category. If None it will be set to the number of lines for the smallest category

	by_quantile (bool (default False)) – If True, uses pd.qcut instead of pd.cut to get the buckets from the continuous column

	seed (int (default 1)) – Random state for consistency.

	Returns

	rebalanced_dataset – A dataset with fewer lines than dataset, but with the same number of lines per category in categ_column

	Return type

	pandas.DataFrame

	
fklearn.preprocessing.splitting.space_time_split_dataset

	Splits panel data using both ID and Time columns, resulting in four datasets

	A training set;

	An in training time, but out sample id hold out dataset;

	An out of training time, but in sample id hold out dataset;

	An out of training time and out of sample id hold out dataset.

	Parameters

	
	dataset (pandas.DataFrame) – A Pandas’ DataFrame with an Identifier Column and a Date Column.
The model will be trained to predict the target column
from the features.

	train_start_date (str) – A date string representing a the starting time of the training data.
It should be in the same format as the Date Column in dataset.

	train_end_date (str) – A date string representing a the ending time of the training data.
This will also be used as the start date of the holdout period if no holdout_start_date is given.
It should be in the same format as the Date Column in dataset.

	holdout_end_date (str) – A date string representing a the ending time of the holdout data.
It should be in the same format as the Date Column in dataset.

	split_seed (int) – A seed used by the random number generator.

	space_holdout_percentage (float) – The out of id holdout size as a proportion of the in id training
size.

	space_column (str) – The name of the Identifier column of dataset.

	time_column (str) – The name of the Date column of dataset.

	holdout_space (np.array) – An array containing the hold out IDs. If not specified,
A random subset of IDs will be selected for holdout.

	holdout_start_date (str) – A date string representing the starting time of the holdout data.
If None is given it will be equal to train_end_date.
It should be in the same format as the Date Column in dataset.

	Returns

	
	train_set (pandas.DataFrame) – The in ID sample and in time training set.

	intime_outspace_hdout (pandas.DataFrame) – The out of ID sample and in time hold out set.

	outime_inspace_hdout (pandas.DataFrame) – The in ID sample and out of time hold out set.

	outime_outspace_hdout (pandas.DataFrame) – The out of ID sample and out of time hold out set.

	
fklearn.preprocessing.splitting.stratified_split_dataset

	Splits data into a training and testing datasets such that
they maintain the same class ratio of the original dataset.

	Parameters

	
	dataset (pandas.DataFrame) – A Pandas’ DataFrame with the target column.
The model will be trained to predict the target column
from the features.

	target_column (str) – The name of the target column of dataset.

	test_size (float) – Represent the proportion of the dataset to include in the test split.
should be between 0.0 and 1.0.

	random_state (int or None, optional (default=None)) – If int, random_state is the seed used by the random number generator;
If None, the random number generator is the RandomState instance used
by np.random.

	Returns

	
	train_set (pandas.DataFrame) – The train dataset sampled from the full dataset.

	test_set (pandas.DataFrame) – The test dataset sampled from the full dataset.

	
fklearn.preprocessing.splitting.time_split_dataset

	Splits temporal data into a training and testing datasets such that
all training data comes before the testings one.

	Parameters

	
	dataset (pandas.DataFrame) – A Pandas’ DataFrame with an Identifier Column and a Date Column.
The model will be trained to predict the target column
from the features.

	train_start_date (str) – A date string representing a the starting time of the training data.
It should be in the same format as the Date Column in dataset.

	train_end_date (str) – A date string representing a the ending time of the training data.
This will also be used as the start date of the holdout period if no holdout_start_date is given.
It should be in the same format as the Date Column in dataset.

	holdout_end_date (str) – A date string representing a the ending time of the holdout data.
It should be in the same format as the Date Column in dataset.

	time_column (str) – The name of the Date column of dataset.

	holdout_start_date (str) – A date string representing the starting time of the holdout data.
If None is given it will be equal to train_end_date.
It should be in the same format as the Date Column in dataset.

	Returns

	
	train_set (pandas.DataFrame) – The in ID sample and in time training set.

	test_set (pandas.DataFrame) – The out of ID sample and in time hold out set.

	
fklearn.training.calibration.isotonic_calibration_learner

	Fits a single feature isotonic regression to the dataset.

	Parameters

	
	df (pandas.DataFrame) – A Pandas’ DataFrame with features and target columns.
The model will be trained to predict the target column
from the features.

	target_column (str) – The name of the column in df that should be used as target for the model.
This column should be binary, since this is a classification model.

	prediction_column (str) – The name of the column with the uncalibrated predictions from the model.

	output_column (str) – The name of the column with the calibrated predictions from the model.

	y_min (float) – Lower bound of Isotonic Regression

	y_max (float) – Upper bound of Isotonic Regression

	Returns

	
	p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a DataFrame with the same columns as df
returns a new DataFrame with a new column with predictions from the model.

	new_df (pandas.DataFrame) – A df-like DataFrame with the same columns as the input df plus a
column with predictions from the model.

	log (dict) – A log-like Dict that stores information of the Isotonic Calibration model.

	
fklearn.training.classification.catboost_classification_learner

	Fits an CatBoost classifier to the dataset. It first generates a DMatrix
with the specified features and labels from df. Then, it fits a CatBoost
model to this DMatrix. Return the predict function for the model and the
predictions for the input dataset.

	Parameters

	
	df (pandas.DataFrame) – A Pandas’ DataFrame with features and target columns.
The model will be trained to predict the target column
from the features.

	features (list of str) – A list os column names that are used as features for the model. All this names
should be in df.

	target (str) – The name of the column in df that should be used as target for the model.
This column should be discrete, since this is a classification model.

	learning_rate (float) – Float in the range (0, 1]
Step size shrinkage used in update to prevents overfitting. After each boosting step,
we can directly get the weights of new features. and eta actually shrinks the
feature weights to make the boosting process more conservative.
See the eta hyper-parameter in:
https://catboost.ai/docs/concepts/python-reference_parameters-list.html

	num_estimators (int) – Int in the range (0, inf)
Number of boosted trees to fit.
See the n_estimators hyper-parameter in:
https://catboost.ai/docs/concepts/python-reference_parameters-list.html

	extra_params (dict, optional) – Dictionary in the format {“hyperparameter_name” : hyperparameter_value}.
Other parameters for the CatBoost model. See the list in:
https://catboost.ai/docs/concepts/python-reference_catboostregressor.html
If not passed, the default will be used.

	prediction_column (str) – The name of the column with the predictions from the model.
If a multiclass problem, additional prediction_column_i columns will be added for i in range(0,n_classes).

	weight_column (str, optional) – The name of the column with scores to weight the data.

	encode_extra_cols (bool (default: True)) – If True, treats all columns in df with name pattern fklearn_feat__col==val` as feature columns.

	Returns

	
	p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a DataFrame with the same columns as df
returns a new DataFrame with a new column with predictions from the model.

	new_df (pandas.DataFrame) – A df-like DataFrame with the same columns as the input df plus a
column with predictions from the model.

	log (dict) – A log-like Dict that stores information of the catboost_classification_learner model.

	
fklearn.training.classification.lgbm_classification_learner

	Fits an LGBM classifier to the dataset.

It first generates a Dataset
with the specified features and labels from df. Then, it fits a LGBM
model to this Dataset. Return the predict function for the model and the
predictions for the input dataset.

	Parameters

	
	df (pandas.DataFrame) – A pandas DataFrame with features and target columns.
The model will be trained to predict the target column
from the features.

	features (list of str) – A list os column names that are used as features for the model. All this names
should be in df.

	target (str) – The name of the column in df that should be used as target for the model.
This column should be discrete, since this is a classification model.

	learning_rate (float) – Float in the range (0, 1]
Step size shrinkage used in update to prevents overfitting. After each boosting step,
we can directly get the weights of new features. and eta actually shrinks the
feature weights to make the boosting process more conservative.
See the learning_rate hyper-parameter in:
https://github.com/Microsoft/LightGBM/blob/master/docs/Parameters.rst

	num_estimators (int) – Int in the range (0, inf)
Number of boosted trees to fit.
See the num_iterations hyper-parameter in:
https://github.com/Microsoft/LightGBM/blob/master/docs/Parameters.rst

	extra_params (dict, optional) – Dictionary in the format {“hyperparameter_name” : hyperparameter_value}.
Other parameters for the LGBM model. See the list in:
https://github.com/Microsoft/LightGBM/blob/master/docs/Parameters.rst
If not passed, the default will be used.

	prediction_column (str) – The name of the column with the predictions from the model.

	weight_column (str, optional) – The name of the column with scores to weight the data.

	encode_extra_cols (bool (default: True)) – If True, treats all columns in df with name pattern fklearn_feat__col==val` as feature columns.

	Returns

	
	p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a DataFrame with the same columns as df
returns a new DataFrame with a new column with predictions from the model.

	new_df (pandas.DataFrame) – A df-like DataFrame with the same columns as the input df plus a
column with predictions from the model.

	log (dict) – A log-like Dict that stores information of the LGBM Classifier model.

	
fklearn.training.classification.logistic_classification_learner

	Fits an logistic regression classifier to the dataset. Return the predict function
for the model and the predictions for the input dataset.

	Parameters

	
	df (pandas.DataFrame) – A Pandas’ DataFrame with features and target columns.
The model will be trained to predict the target column
from the features.

	features (list of str) – A list os column names that are used as features for the model. All this names
should be in df.

	target (str) – The name of the column in df that should be used as target for the model.
This column should be discrete, since this is a classification model.

	params (dict) – The LogisticRegression parameters in the format {“par_name”: param}. See:
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

	prediction_column (str) – The name of the column with the predictions from the model.
If a multiclass problem, additional prediction_column_i columns will be added for i in range(0,n_classes).

	weight_column (str, optional) – The name of the column with scores to weight the data.

	encode_extra_cols (bool (default: True)) – If True, treats all columns in df with name pattern fklearn_feat__col==val` as feature columns.

	Returns

	
	p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a DataFrame with the same columns as df
returns a new DataFrame with a new column with predictions from the model.

	new_df (pandas.DataFrame) – A df-like DataFrame with the same columns as the input df plus a
column with predictions from the model.

	log (dict) – A log-like Dict that stores information of the Logistic Regression model.

	
fklearn.training.classification.nlp_logistic_classification_learner

	Fits a text vectorizer (TfidfVectorizer) followed by
a logistic regression (LogisticRegression).

	Parameters

	
	df (pandas.DataFrame) – A Pandas’ DataFrame with features and target columns.
The model will be trained to predict the target column
from the features.

	text_feature_cols (list of str) – A list of column names of the text features used for the model. All these names
should be in df.

	target (str) – The name of the column in df that should be used as target for the model.
This column should be discrete, since this is a classification model.

	vectorizer_params (dict) – The TfidfVectorizer parameters in the format {“par_name”: param}. See:
http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html

	logistic_params (dict) – The LogisticRegression parameters in the format {“par_name”: param}. See:
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

	prediction_column (str) – The name of the column with the predictions from the model.

	Returns

	
	p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a DataFrame with the same columns as df
returns a new DataFrame with a new column with predictions from the model.

	new_df (pandas.DataFrame) – A df-like DataFrame with the same columns as the input df plus a
column with predictions from the model.

	log (dict) – A log-like Dict that stores information of the NLP Logistic Regression model.

	
fklearn.training.classification.xgb_classification_learner

	Fits an XGBoost classifier to the dataset. It first generates a DMatrix
with the specified features and labels from df. Then, it fits a XGBoost
model to this DMatrix. Return the predict function for the model and the
predictions for the input dataset.

	Parameters

	
	df (pandas.DataFrame) – A Pandas’ DataFrame with features and target columns.
The model will be trained to predict the target column
from the features.

	features (list of str) – A list os column names that are used as features for the model. All this names
should be in df.

	target (str) – The name of the column in df that should be used as target for the model.
This column should be discrete, since this is a classification model.

	learning_rate (float) – Float in the range (0, 1]
Step size shrinkage used in update to prevents overfitting. After each boosting step,
we can directly get the weights of new features. and eta actually shrinks the
feature weights to make the boosting process more conservative.
See the eta hyper-parameter in:
http://xgboost.readthedocs.io/en/latest/parameter.html

	num_estimators (int) – Int in the range (0, inf)
Number of boosted trees to fit.
See the n_estimators hyper-parameter in:
http://xgboost.readthedocs.io/en/latest/python/python_api.html

	extra_params (dict, optional) – Dictionary in the format {“hyperparameter_name” : hyperparameter_value}.
Other parameters for the XGBoost model. See the list in:
http://xgboost.readthedocs.io/en/latest/parameter.html
If not passed, the default will be used.

	prediction_column (str) – The name of the column with the predictions from the model.
If a multiclass problem, additional prediction_column_i columns will be added for i in range(0,n_classes).

	weight_column (str, optional) – The name of the column with scores to weight the data.

	encode_extra_cols (bool (default: True)) – If True, treats all columns in df with name pattern fklearn_feat__col==val` as feature columns.

	Returns

	
	p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a DataFrame with the same columns as df
returns a new DataFrame with a new column with predictions from the model.

	new_df (pandas.DataFrame) – A df-like DataFrame with the same columns as the input df plus a
column with predictions from the model.

	log (dict) – A log-like Dict that stores information of the XGboost Classifier model.

	
fklearn.training.ensemble.xgb_octopus_classification_learner

	Octopus ensemble allows you to inject domain specific knowledge to force a split in an initial feature, instead of
assuming the tree model will do that intelligent split on its own. It works by first defining a split on your
dataset and then training one individual model in each separated dataset.

	Parameters

	
	train_set (pd.DataFrame) – A Pandas’ DataFrame with features, target columns and a splitting column that must be categorical.

	learning_rate_by_bin (dict) – A dictionary of learning rate in the XGBoost model to use in each model split. Ex: if you want to
split your training by tenure and you have a tenure column with integer values [1,2,3,…,12], you have to
specify a list of learning rates for each split:

{
 1: 0.08,
 2: 0.08,
 ...
 12: 0.1
}

	num_estimators_by_bin (dict) – A dictionary of number of tree estimators in the XGBoost model to use in each model split. Ex: if you want to
split your training by tenure and you have a tenure column with integer values [1,2,3,…,12], you have to
specify a list of estimators for each split:

{
 1: 300,
 2: 250,
 ...
 12: 300
}

	extra_params_by_bin (dict) – A dictionary of extra parameters dictionaries in the XGBoost model to use in each model split. Ex: if you want
to split your training by tenure and you have a tenure column with integer values [1,2,3,…,12], you have to
specify a list of extra parameters for each split:

{
 1: {
 'reg_alpha': 0.0,
 'colsample_bytree': 0.4,
 ...
 'colsample_bylevel': 0.8
 }
 2: {
 'reg_alpha': 0.1,
 'colsample_bytree': 0.6,
 ...
 'colsample_bylevel': 0.4
 }
 ...
 12: {
 'reg_alpha': 0.0,
 'colsample_bytree': 0.7,
 ...
 'colsample_bylevel': 1.0
 }
}

	features_by_bin (dict) – A dictionary of features to use in each model split. Ex: if you want to split your training by tenure and you
have a tenure column with integer values [1,2,3,…,12], you have to specify a list of features for each split:

{
 1: [feature-1, feature-2, feature-3, ...],
 2: [feature-1, feature-3, feature-5, ...],
 ...
 12: [feature-2, feature-4, feature-8, ...]
}

	train_split_col (str) – The name of the categorical column where the model will make the splits. Ex: if you want to split your training
by tenure, you can have a categorical column called “tenure”.

	train_split_bins (list) – A list with the actual values of the categories from the train_split_col. Ex: if you want to split your
training by tenure and you have a tenure column with integer values [1,2,3,…,12] you can pass this list and
you will split your training into 12 different models.

	nthread (int) – Number of threads for the XGBoost learners.

	target_column (str) – The name of the target column.

	prediction_column (str) – The name of the column with the predictions from the model.

	Returns

	
	p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a DataFrame with the same columns as df
returns a new DataFrame with a new column with predictions from the model.

	new_df (pandas.DataFrame) – A df-like DataFrame with the same columns as the input df plus a
column with predictions from the model.

	log (dict) – A log-like Dict that stores information of the Octopus XGB Classifier model.

	
fklearn.training.imputation.imputer

	Fits a missing value imputer to the dataset.

	Parameters

	
	df (pandas.DataFrame) – A Pandas’ DataFrame with columns to impute missing values.
It must contain all columns listed in columns_to_impute

	columns_to_impute (List of strings) – A list of names of the columns for missing value imputation.

	impute_strategy (String, (default="median")) – The imputation strategy.
- If “mean”, then replace missing values using the mean along the axis.
- If “median”, then replace missing values using the median along the axis.
- If “most_frequent”, then replace missing using the most frequent value along the axis.

	placeholder_value (Any, (default=None)) – if not None, use this as default value when some features only contains
NA values on training. For transformation, NA values on those features
will be replaced by fill_value.

	Returns

	
	p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a DataFrame with the same columns as df
returns a new DataFrame with a new column with predictions from the model.

	new_df (pandas.DataFrame) – A df-like DataFrame with the same columns as the input df plus a
column with predictions from the model.

	log (dict) – A log-like Dict that stores information of the SimpleImputer model.

	
fklearn.training.imputation.placeholder_imputer

	Fills missing values with a fixed value.

	Parameters

	
	df (pandas.DataFrame) – A Pandas’ DataFrame with columns to fill missing values.
It must contain all columns listed in columns_to_impute

	columns_to_impute (List of strings) – A list of names of the columns for filling missing value.

	placeholder_value (Any, (default=-999)) – The value used to fill in missing values.

	Returns

	
	p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a DataFrame with the same columns as df
returns a new DataFrame with a new column with predictions from the model.

	new_df (pandas.DataFrame) – A df-like DataFrame with the same columns as the input df plus a
column with predictions from the model.

	log (dict) – A log-like Dict that stores information of the Placeholder SimpleImputer model.

	
fklearn.training.pipeline.build_pipeline(*learners, has_repeated_learners: bool = False) → Callable[pandas.core.frame.DataFrame, Tuple[Callable[pandas.core.frame.DataFrame, pandas.core.frame.DataFrame], pandas.core.frame.DataFrame, Dict[str, Dict[str, Any]]]]

	Builds a pipeline of different chained learners functions with the possibility of using keyword arguments
in the predict functions of the pipeline.

Say you have two learners, you create a pipeline with pipeline = build_pipeline(learner1, learner2).
Those learners must be functions with just one unfilled argument (the dataset itself).

Then, you train the pipeline with predict_fn, transformed_df, logs = pipeline(df),
which will be like applying the learners in the following order: learner2(learner1(df)).

Finally, you predict on different datasets with pred_df = predict_fn(new_df), with optional kwargs.
For example, if you have XGBoost or LightGBM, you can get SHAP values with predict_fn(new_df, apply_shap=True).

	Parameters

	
	learners (partially-applied learner functions.) –

	has_repeated_learners (bool) – Boolean value indicating wheter the pipeline contains learners with the same name or not.

	Returns

	
	p (function pandas.DataFrame, **kwargs -> pandas.DataFrame) – A function that when applied to a DataFrame will apply all learner
functions in sequence, with optional kwargs.

	new_df (pandas.DataFrame) – A DataFrame that is the result of applying all learner function
in sequence.

	log (dict) – A log-like Dict that stores information of all learner functions.

	
fklearn.training.regression.catboost_regressor_learner

	Fits an CatBoost regressor to the dataset. It first generates a Pool
with the specified features and labels from df. Then it fits a CatBoost
model to this Pool. Return the predict function for the model and the
predictions for the input dataset.

	Parameters

	
	df (pandas.DataFrame) – A Pandas’ DataFrame with features and target columns.
The model will be trained to predict the target column
from the features.

	features (list of str) – A list os column names that are used as features for the model. All this names
should be in df.

	target (str) – The name of the column in df that should be used as target for the model.
This column should be numerical and continuous, since this is a regression model.

	learning_rate (float) – Float in range [0,1].
Step size shrinkage used in update to prevents overfitting. After each boosting step,
we can directly get the weights of new features. and eta actually shrinks the
feature weights to make the boosting process more conservative.
See the eta hyper-parameter in:
https://catboost.ai/docs/concepts/python-reference_parameters-list.html

	num_estimators (int) – Int in range [0, inf]
Number of boosted trees to fit.
See the n_estimators hyper-parameter in:
https://catboost.ai/docs/concepts/python-reference_parameters-list.html

	extra_params (dict, optional) – Dictionary in the format {“hyperparameter_name” : hyperparameter_value.
Other parameters for the CatBoost model. See the list in:
https://catboost.ai/docs/concepts/python-reference_catboostregressor.html
If not passed, the default will be used.

	prediction_column (str) – The name of the column with the predictions from the model.

	weight_column (str, optional) – The name of the column with scores to weight the data.

	Returns

	
	p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a DataFrame with the same columns as df
returns a new DataFrame with a new column with predictions from the model.

	new_df (pandas.DataFrame) – A df-like DataFrame with the same columns as the input df plus a
column with predictions from the model.

	log (dict) – A log-like Dict that stores information of the CatBoostRegressor model.

	
fklearn.training.regression.custom_supervised_model_learner

	Fits a custom model to the dataset.
Return the predict function, the predictions for the input dataset and a log describing the model.

	Parameters

	
	df (pandas.DataFrame) – A Pandas’ DataFrame with features and target columns.
The model will be trained to predict the target column
from features.

	features (list of str) – A list os column names that are used as features for the model. All this names
should be in df.

	target (str) – The name of the column in df that should be used as target for the model.

	model (Object) – Machine learning model to be used for regression or clasisfication.
model object must have “.fit” attribute to train the data.
For classification problems, it also needs “.predict_proba” attribute.
For regression problemsm it needs “.predict” attribute.

	supervised_type (str) – Type of supervised learning to be used
The options are: ‘classification’ or ‘regression’

	log (Dict[str, Dict]) – Log with additional information of the custom model used.
It must start with just one element with the model name.

	prediction_column (str) – The name of the column with the predictions from the model.
For classification problems, all probabilities wiill be added: for i in range(0,n_classes).
For regression just prediction_column will be added.

	Returns

	
	p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a DataFrame with the same columns as df
returns a new DataFrame with a new column with predictions from the model.

	new_df (pandas.DataFrame) – A df-like DataFrame with the same columns as the input df plus a
column with predictions from the model.

	log (dict) – A log-like Dict that stores information of the Custom Supervised Model Learner model.

	
fklearn.training.regression.gp_regression_learner

	Fits an gaussian process regressor to the dataset.

	Parameters

	
	df (pandas.DataFrame) – A Pandas’ DataFrame with features and target columns.
The model will be trained to predict the target column
from the features.

	features (list of str) – A list os column names that are used as features for the model. All this names
should be in df.

	target (str) – The name of the column in df that should be used as target for the model.
This column should be numerical and continuous, since this is a regression model.

	kernel (sklearn.gaussian_process.kernels) – The kernel specifying the covariance function of the GP. If None is passed,
the kernel “1.0 * RBF(1.0)” is used as default. Note that the kernel’s hyperparameters
are optimized during fitting.

	alpha (float) – Value added to the diagonal of the kernel matrix during fitting. Larger values correspond to increased
noise level in the observations. This can also prevent a potential numerical issue during fitting,
by ensuring that the calculated values form a positive definite matrix.

	extra_variance (float) – The amount of extra variance to scale to the predictions in standard deviations. If left as the default “fit”,
Uses the standard deviation of the target.

	return_std (bool) – If True, the standard-deviation of the predictive distribution at the query points is returned
along with the mean.

	extra_params (dict {"hyperparameter_name" : hyperparameter_value}, optional) – Other parameters for the GaussianProcessRegressor model. See the list in:
http://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.GaussianProcessRegressor.html
If not passed, the default will be used.

	prediction_column (str) – The name of the column with the predictions from the model.

	encode_extra_cols (bool (default: True)) – If True, treats all columns in df with name pattern fklearn_feat__col==val` as feature columns.

	Returns

	
	p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a DataFrame with the same columns as df
returns a new DataFrame with a new column with predictions from the model.

	new_df (pandas.DataFrame) – A df-like DataFrame with the same columns as the input df plus a
column with predictions from the model.

	log (dict) – A log-like Dict that stores information of the Gaussian Process Regressor model.

	
fklearn.training.regression.lgbm_regression_learner

	Fits an LGBM regressor to the dataset.

It first generates a Dataset with the specified features and labels
from df. Then, it fits a LGBM model to this Dataset. Return the predict
function for the model and the predictions for the input dataset.

	Parameters

	
	df (pandas.DataFrame) – A Pandas’ DataFrame with features and target columns.
The model will be trained to predict the target column
from the features.

	features (list of str) – A list os column names that are used as features for the model. All this names
should be in df.

	target (str) – The name of the column in df that should be used as target for the model.
This column should be binary, since this is a classification model.

	learning_rate (float) – Float in the range (0, 1]
Step size shrinkage used in update to prevents overfitting. After each boosting step,
we can directly get the weights of new features. and eta actually shrinks the
feature weights to make the boosting process more conservative.
See the learning_rate hyper-parameter in:
https://github.com/Microsoft/LightGBM/blob/master/docs/Parameters.rst

	num_estimators (int) – Int in the range (0, inf)
Number of boosted trees to fit.
See the num_iterations hyper-parameter in:
https://github.com/Microsoft/LightGBM/blob/master/docs/Parameters.rst

	extra_params (dict, optional) – Dictionary in the format {“hyperparameter_name” : hyperparameter_value}.
Other parameters for the LGBM model. See the list in:
https://github.com/Microsoft/LightGBM/blob/master/docs/Parameters.rst
If not passed, the default will be used.

	prediction_column (str) – The name of the column with the predictions from the model.

	weight_column (str, optional) – The name of the column with scores to weight the data.

	encode_extra_cols (bool (default: True)) – If True, treats all columns in df with name pattern fklearn_feat__col==val` as feature columns.

	Returns

	
	p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a DataFrame with the same columns as df
returns a new DataFrame with a new column with predictions from the model.

	new_df (pandas.DataFrame) – A df-like DataFrame with the same columns as the input df plus a
column with predictions from the model.

	log (dict) – A log-like Dict that stores information of the LGBM Regressor model.

	
fklearn.training.regression.linear_regression_learner

	Fits an linear regression classifier to the dataset. Return the predict function
for the model and the predictions for the input dataset.

	Parameters

	
	df (pandas.DataFrame) – A Pandas’ DataFrame with features and target columns.
The model will be trained to predict the target column
from the features.

	features (list of str) – A list os column names that are used as features for the model. All this names
should be in df.

	target (str) – The name of the column in df that should be used as target for the model.
This column should be continuous, since this is a regression model.

	params (dict) – The LinearRegression parameters in the format {“par_name”: param}. See:
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html

	prediction_column (str) – The name of the column with the predictions from the model.

	weight_column (str, optional) – The name of the column with scores to weight the data.

	encode_extra_cols (bool (default: True)) – If True, treats all columns in df with name pattern fklearn_feat__col==val` as feature columns.

	Returns

	
	p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a DataFrame with the same columns as df
returns a new DataFrame with a new column with predictions from the model.

	new_df (pandas.DataFrame) – A df-like DataFrame with the same columns as the input df plus a
column with predictions from the model.

	log (dict) – A log-like Dict that stores information of the Linear Regression model.

	
fklearn.training.regression.xgb_regression_learner

	Fits an XGBoost regressor to the dataset. It first generates a DMatrix
with the specified features and labels from df. Then it fits a XGBoost
model to this DMatrix. Return the predict function for the model and the
predictions for the input dataset.

	Parameters

	
	df (pandas.DataFrame) – A Pandas’ DataFrame with features and target columns.
The model will be trained to predict the target column
from the features.

	features (list of str) – A list os column names that are used as features for the model. All this names
should be in df.

	target (str) – The name of the column in df that should be used as target for the model.
This column should be numerical and continuous, since this is a regression model.

	learning_rate (float) – Float in range [0,1].
Step size shrinkage used in update to prevents overfitting. After each boosting step,
we can directly get the weights of new features. and eta actually shrinks the
feature weights to make the boosting process more conservative.
See the eta hyper-parameter in:
http://xgboost.readthedocs.io/en/latest/parameter.html

	num_estimators (int) – Int in range [0, inf]
Number of boosted trees to fit.
See the n_estimators hyper-parameter in:
http://xgboost.readthedocs.io/en/latest/python/python_api.html

	extra_params (dict, optional) – Dictionary in the format {“hyperparameter_name” : hyperparameter_value.
Other parameters for the XGBoost model. See the list in:
http://xgboost.readthedocs.io/en/latest/parameter.html
If not passed, the default will be used.

	prediction_column (str) – The name of the column with the predictions from the model.

	weight_column (str, optional) – The name of the column with scores to weight the data.

	encode_extra_cols (bool (default: True)) – If True, treats all columns in df with name pattern fklearn_feat__col==val` as feature columns.

	Returns

	
	p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a DataFrame with the same columns as df
returns a new DataFrame with a new column with predictions from the model.

	new_df (pandas.DataFrame) – A df-like DataFrame with the same columns as the input df plus a
column with predictions from the model.

	log (dict) – A log-like Dict that stores information of the XGboost Regressor model.

	
fklearn.training.transformation.apply_replacements(df: pandas.core.frame.DataFrame, columns: List[str], vec: Dict[str, Dict], replace_unseen: Any) → pandas.core.frame.DataFrame

	Base function to apply the replacements values found on the
“vec” vectors into the df DataFrame.

	Parameters

	
	df (pandas.DataFrame) – A Pandas DataFrame containing the data to be replaced.

	columns (list of str) – The df columns names to perform the replacements.

	vec (dict) – A dict mapping a col to dict mapping a value to its replacement. For example:
vec = {“feature1”: {1: 2, 3: 5, 6: 8}}

	replace_unseen (Any) – Default value to replace when original value is not present in the vec dict for the feature

	
fklearn.training.transformation.capper

	Learns the maximum value for each of the columns_to_cap
and used that as the cap for those columns. If precomputed caps
are passed, the function uses that as the cap value instead of
computing the maximum.

	Parameters

	
	df (pandas.DataFrame) – A Pandas’ DataFrame that must contain columns_to_cap columns.

	columns_to_cap (list of str) – A list os column names that should be caped.

	precomputed_caps (dict) – A dictionary on the format {“column_name” : cap_value}.
That maps column names to pre computed cap values

	Returns

	
	p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a DataFrame with the same columns as df
returns a new DataFrame with a new column with predictions from the model.

	new_df (pandas.DataFrame) – A df-like DataFrame with the same columns as the input df plus a
column with predictions from the model.

	log (dict) – A log-like Dict that stores information of the Capper model.

	
fklearn.training.transformation.count_categorizer

	Replaces categorical variables by count.

	Parameters

	
	df (pandas.DataFrame) – A Pandas’ DataFrame that must contain columns_to_categorize columns.

	columns_to_categorize (list of str) – A list of categorical column names.

	replace_unseen (int) – The value to impute unseen categories.

	store_mapping (bool (default: False)) – Whether to store the feature value -> integer dictionary in the log

	Returns

	
	p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a DataFrame with the same columns as df
returns a new DataFrame with a new column with predictions from the model.

	new_df (pandas.DataFrame) – A df-like DataFrame with the same columns as the input df plus a
column with predictions from the model.

	log (dict) – A log-like Dict that stores information of the Count Categorizer model.

	
fklearn.training.transformation.custom_transformer

	Applies a custom function to the desired columns.

	Parameters

	
	df (pandas.DataFrame) – A Pandas’ DataFrame that must contain columns

	columns_to_transform (list of str) – A list of column names that will remain in the dataframe during training time (fit)

	transformation_function (function(pandas.DataFrame) -> pandas.DataFrame) – A function that receives a DataFrame as input, performs a transformation on its columns
and returns another DataFrame.

	Returns

	
	p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a DataFrame with the same columns as df
returns a new DataFrame with a new column with predictions from the model.

	new_df (pandas.DataFrame) – A df-like DataFrame with the same columns as the input df plus a
column with predictions from the model.

	log (dict) – A log-like Dict that stores information of the Custom Transformer model.

	
fklearn.training.transformation.discrete_ecdfer

	Learns an Empirical Cumulative Distribution Function from the specified column
in the input DataFrame. It is usually used in the prediction column to convert
a predicted probability into a score from 0 to 1000.

	Parameters

	
	df (Pandas' pandas.DataFrame) – A Pandas’ DataFrame that must contain a prediction_column columns.

	ascending (bool) – Whether to compute an ascending ECDF or a descending one.

	prediction_column (str) – The name of the column in df to learn the ECDF from.

	ecdf_column (str) – The name of the new ECDF column added by this function.

	max_range (int) –
	The maximum value for the ECDF. It will go will go

	from 0 to max_range.

	round_method (Callable) – A function perform the round of transformed values for ex: (int, ceil, floor, round)

	Returns

	
	p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a DataFrame with the same columns as df
returns a new DataFrame with a new column with predictions from the model.

	new_df (pandas.DataFrame) – A df-like DataFrame with the same columns as the input df plus a
column with predictions from the model.

	log (dict) – A log-like Dict that stores information of the Discrete ECDFer model.

	
fklearn.training.transformation.ecdfer

	Learns an Empirical Cumulative Distribution Function from the specified column
in the input DataFrame. It is usually used in the prediction column to convert
a predicted probability into a score from 0 to 1000.

	Parameters

	
	df (Pandas' pandas.DataFrame) – A Pandas’ DataFrame that must contain a prediction_column columns.

	ascending (bool) – Whether to compute an ascending ECDF or a descending one.

	prediction_column (str) – The name of the column in df to learn the ECDF from.

	ecdf_column (str) – The name of the new ECDF column added by this function

	max_range (int) –
	The maximum value for the ECDF. It will go will go

	from 0 to max_range.

	Returns

	
	p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a DataFrame with the same columns as df
returns a new DataFrame with a new column with predictions from the model.

	new_df (pandas.DataFrame) – A df-like DataFrame with the same columns as the input df plus a
column with predictions from the model.

	log (dict) – A log-like Dict that stores information of the ECDFer model.

	
fklearn.training.transformation.floorer

	Learns the minimum value for each of the columns_to_floor
and used that as the floot for those columns. If precomputed floors
are passed, the function uses that as the cap value instead of
computing the minimun.

	Parameters

	
	df (pandas.DataFrame) – A Pandas’ DataFrame that must contain columns_to_floor columns.

	columns_to_floor (list of str) – A list os column names that should be floored.

	precomputed_floors (dict) – A dictionary on the format {“column_name” : floor_value}
that maps column names to pre computed floor values

	Returns

	
	p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a DataFrame with the same columns as df
returns a new DataFrame with a new column with predictions from the model.

	new_df (pandas.DataFrame) – A df-like DataFrame with the same columns as the input df plus a
column with predictions from the model.

	log (dict) – A log-like Dict that stores information of the Floorer model.

	
fklearn.training.transformation.label_categorizer

	Replaces categorical variables with a numeric identifier.

	Parameters

	
	df (pandas.DataFrame) – A Pandas’ DataFrame that must contain columns_to_categorize columns.

	columns_to_categorize (list of str) – A list of categorical column names.

	replace_unseen (int, str, float, or nan) – The value to impute unseen categories.

	store_mapping (bool (default: False)) – Whether to store the feature value -> integer dictionary in the log

	Returns

	
	p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a DataFrame with the same columns as df
returns a new DataFrame with a new column with predictions from the model.

	new_df (pandas.DataFrame) – A df-like DataFrame with the same columns as the input df plus a
column with predictions from the model.

	log (dict) – A log-like Dict that stores information of the Label Categorizer model.

	
fklearn.training.transformation.missing_warner

	Creates a new column to warn about rows that columns that don’t have missing in the training set
but have missing on the scoring

	Parameters

	
	df (pandas.DataFrame) – A Pandas’ DataFrame.

	cols_list (list of str) – List of columns to consider when evaluating missingness

	new_column_name (str) – Name of the column created to alert the existence of missing values

	Returns

	
	p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a DataFrame with the same columns as df
returns a new DataFrame with a new column with predictions from the model.

	new_df (pandas.DataFrame) – A df-like DataFrame with the same columns as the input df plus a
column with predictions from the model.

	log (dict) – A log-like Dict that stores information of the Missing Alerter model.

	
fklearn.training.transformation.null_injector

	Applies a custom function to the desired columns.

	Parameters

	
	df (pandas.DataFrame) – A Pandas’ DataFrame that must contain columns_to_inject as columns

	columns_to_inject (list of str) – A list of features to inject nulls. If groups is not None it will be ignored.

	proportion (float) – Proportion of nulls to inject in the columns.

	groups (list of list of str (default = None)) – A list of group of features. If not None, feature in the same group will be set to NaN together.

	seed (int) – Random seed for consistency.

	Returns

	
	p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a DataFrame with the same columns as df
returns a new DataFrame with a new column with predictions from the model.

	new_df (pandas.DataFrame) – A df-like DataFrame with the same columns as the input df plus a
column with predictions from the model.

	log (dict) – A log-like Dict that stores information of the Null Injector model.

	
fklearn.training.transformation.onehot_categorizer

	Onehot encoding on categorical columns.
Encoded columns are removed and substituted by columns named
fklearn_feat__col==val, where col is the name of the column
and val is one of the values the feature can assume.

	Parameters

	
	df (pd.DataFrame) – A Pandas’ DataFrame that must contain columns_to_categorize columns.

	columns_to_categorize (list of str) – A list of categorical column names. Must be non-empty.

	hardcode_nans (bool) – Hardcodes an extra column with: 1 if nan or unseen else 0.

	drop_first_column (bool) – Drops the first column to create (k-1)-sized one-hot arrays for k
features per categorical column. Can be used to avoid colinearity.

	store_mapping (bool (default: False)) – Whether to store the feature value -> integer dictionary in the log

	Returns

	
	p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a DataFrame with the same columns as df
returns a new DataFrame with a new column with predictions from the model.

	new_df (pandas.DataFrame) – A df-like DataFrame with the same columns as the input df plus a
column with predictions from the model.

	log (dict) – A log-like Dict that stores information of the Onehot Categorizer model.

	
fklearn.training.transformation.prediction_ranger

	Caps and floors the specified prediction column to a set range.

	Parameters

	
	df (pandas.DataFrame) – A Pandas’ DataFrame that must contain a prediction_column columns.

	prediction_min (float) – The floor for the prediction.

	prediction_max (float) – The cap for the prediction.

	prediction_column (str) – The name of the column in df to cap and floor

	Returns

	
	p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a DataFrame with the same columns as df
returns a new DataFrame with a new column with predictions from the model.

	new_df (pandas.DataFrame) – A df-like DataFrame with the same columns as the input df plus a
column with predictions from the model.

	log (dict) – A log-like Dict that stores information of the Prediction Ranger model.

	
fklearn.training.transformation.quantile_biner

	Discretize continuous numerical columns into its quantiles. Uses pandas.qcut
to find the bins and then numpy.digitize to fit the columns into bins.

	Parameters

	
	df (pandas.DataFrame) – A Pandas’ DataFrame that must contain columns_to_categorize columns.

	columns_to_bin (list of str) – A list of numerical column names.

	q (int) – Number of quantiles. 10 for deciles, 4 for quartiles, etc.
Alternately array of quantiles, e.g. [0, .25, .5, .75, 1.] for quartiles.
See https://pandas.pydata.org/pandas-docs/stable/generated/pandas.qcut.html

	right (bool) – Indicating whether the intervals include the right or the left bin edge.
Default behavior is (right==False) indicating that the interval does not
include the right edge. The left bin end is open in this case, i.e., bins[i-1]
<= x < bins[i] is the default behavior for monotonically increasing bins.
See https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.digitize.html

	Returns

	
	p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a DataFrame with the same columns as df
returns a new DataFrame with a new column with predictions from the model.

	new_df (pandas.DataFrame) – A df-like DataFrame with the same columns as the input df plus a
column with predictions from the model.

	log (dict) – A log-like Dict that stores information of the Quantile Biner model.

	
fklearn.training.transformation.rank_categorical

	Rank categorical features by their frequency in the train set.

	Parameters

	
	df (Pandas' DataFrame) – A Pandas’ DataFrame that must contain a prediction_column columns.

	columns_to_rank (list of str) – The df columns names to perform the rank.

	replace_unseen (int, str, float, or nan) – The value to impute unseen categories.

	store_mapping (bool (default: False)) – Whether to store the feature value -> integer dictionary in the log

	Returns

	
	p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a DataFrame with the same columns as df
returns a new DataFrame with a new column with predictions from the model.

	new_df (pandas.DataFrame) – A df-like DataFrame with the same columns as the input df plus a
column with predictions from the model.

	log (dict) – A log-like Dict that stores information of the Rank Categorical model.

	
fklearn.training.transformation.selector

	Filters a DataFrames by selecting only the desired columns.

	Parameters

	
	df (pandas.DataFrame) – A Pandas’ DataFrame that must contain columns

	training_columns (list of str) – A list of column names that will remain in the dataframe during training time (fit)

	predict_columns (list of str) – A list of column names that will remain in the dataframe during prediction time (transform)
If None, it defaults to training_columns.

	Returns

	
	p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a DataFrame with the same columns as df
returns a new DataFrame with a new column with predictions from the model.

	new_df (pandas.DataFrame) – A df-like DataFrame with the same columns as the input df plus a
column with predictions from the model.

	log (dict) – A log-like Dict that stores information of the Selector model.

	
fklearn.training.transformation.standard_scaler

	Fits a standard scaler to the dataset.

	Parameters

	
	df (pandas.DataFrame) – A Pandas’ DataFrame with columns to scale.
It must contain all columns listed in columns_to_scale.

	columns_to_scale (list of str) – A list of names of the columns for standard scaling.

	Returns

	
	p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a DataFrame with the same columns as df
returns a new DataFrame with a new column with predictions from the model.

	new_df (pandas.DataFrame) – A df-like DataFrame with the same columns as the input df plus a
column with predictions from the model.

	log (dict) – A log-like Dict that stores information of the Standard Scaler model.

	
fklearn.training.transformation.target_categorizer

	Replaces categorical variables with the smoothed mean of the target variable by category.
Uses a weighted average with the overall mean of the target variable for smoothing.

	Parameters

	
	df (pandas.DataFrame) – A Pandas’ DataFrame that must contain columns_to_categorize and target_column columns.

	columns_to_categorize (list of str) – A list of categorical column names.

	target_column (str) – Target column name. Target can be binary or continuous.

	smoothing (float (default: 1.0)) – Weight given to overall target mean against target mean by category.
The value must be greater than or equal to 0

	ignore_unseen (bool (default: True)) – If True, unseen values will be encoded as nan
If False, these will be replaced by target mean.

	store_mapping (bool (default: False)) – Whether to store the feature value -> float dictionary in the log.

	Returns

	
	p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a DataFrame with the same columns as df
returns a new DataFrame with a new column with predictions from the model.

	new_df (pandas.DataFrame) – A df-like DataFrame with the same columns as the input df plus a
column with predictions from the model.

	log (dict) – A log-like Dict that stores information of the Target Categorizer model.

	
fklearn.training.transformation.truncate_categorical

	Truncate infrequent categories and replace them by a single one.
You can think of it like “others” category.

	Parameters

	
	df (pandas.DataFrame) – A Pandas’ DataFrame that must contain a prediction_column columns.

	columns_to_truncate (list of str) – The df columns names to perform the truncation.

	percentile (float) – Categories less frequent than the percentile will be replaced by the
same one.

	replacement (int, str, float or nan) – The value to use when a category is less frequent that the percentile
variable.

	replace_unseen (int, str, float, or nan) – The value to impute unseen categories.

	store_mapping (bool (default: False)) – Whether to store the feature value -> integer dictionary in the log.

	Returns

	
	p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a DataFrame with the same columns as df
returns a new DataFrame with a new column with predictions from the model.

	new_df (pandas.DataFrame) – A df-like DataFrame with the same columns as the input df plus a
column with predictions from the model.

	log (dict) – A log-like Dict that stores information of the Truncate Categorical model.

	
fklearn.training.transformation.value_mapper

	Map values in selected columns in the DataFrame according to dictionaries of replacements.
Learner wrapper for apply_replacements

	Parameters

	
	df (pandas.DataFrame) – A Pandas DataFrame containing the data to be replaced.

	value_maps (dict of dicts) – A dict mapping a col to dict mapping a value to its replacement. For example:
value_maps = {“feature1”: {1: 2, 3: 5, 6: 8}}

	ignore_unseen (bool) – If True, values not explicitly declared in value_maps will be left as is.
If False, these will be replaced by replace_unseen_to.

	replace_unseen_to (Any) – Default value to replace when original value is not present in the vec dict for the feature.

	
fklearn.training.unsupervised.isolation_forest_learner

	Fits an anomaly detection algorithm (Isolation Forest) to the dataset

	Parameters

	
	df (pandas.DataFrame) – A Pandas’ DataFrame with features and target columns.
The model will be trained to predict the target column
from the features.

	features (list of str) – A list os column names that are used as features for the model. All this names
should be in df.

	params (dict) – The IsolationForest parameters in the format {“par_name”: param}. See:
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html

	prediction_column (str) – The name of the column with the predictions from the model.

	encode_extra_cols (bool (default: True)) – If True, treats all columns in df with name pattern fklearn_feat__col==val` as feature columns.

	Returns

	
	p (function pandas.DataFrame -> pandas.DataFrame) – A function that when applied to a DataFrame with the same columns as df
returns a new DataFrame with a new column with predictions from the model.

	new_df (pandas.DataFrame) – A df-like DataFrame with the same columns as the input df plus a
column with predictions from the model.

	log (dict) – A log-like Dict that stores information of the Isolation Forest model.

	
fklearn.training.utils.expand_features_encoded(df: pandas.core.frame.DataFrame, features: List[str]) → List[str]

	Expand the list of features to include features created automatically
by fklearn in encoders such as Onehot-encoder.
All features created by fklearn have the naming pattern fklearn_feat__col==val.
This function looks for these names in the DataFrame columns, checks if they can
be derivative of any of the features listed in features, adds them to the new
list of features and removes the original names from the list.

E.g. df has columns col1 with values 0 and 1 and col2. After Onehot-encoding
col1 df will have columns fklearn_feat_col1==0, fklearn_feat_col1==1, col2.
This function will then add fklearn_feat_col1==0 and fklearn_feat_col1==1 to
the list of features and remove col1. If for some reason df also has another
column fklearn_feat_col3==x but col3 is not on the list of features, this
column will not be added.

	Parameters

	
	df (pd.DataFrame) – A Pandas’ DataFrame with all features.

	features (list of str) – The original list of features.

	
fklearn.tuning.model_agnostic_fc.correlation_feature_selection

	Feature selection based on correlation

	Parameters

	
	train_set (pd.DataFrame) – A Pandas’ DataFrame with the training data

	features (list of str) – The list of features to consider when dropping with correlation

	threshold (float) – The correlation threshold. Will drop features with correlation equal or
above this threshold

	Returns

	

	Return type

	log with feature correlation, features to drop and final features

	
fklearn.tuning.model_agnostic_fc.variance_feature_selection

	Feature selection based on variance

	Parameters

	
	train_set (pd.DataFrame) – A Pandas’ DataFrame with the training data

	features (list of str) – The list of features to consider when dropping with variance

	threshold (float) – The variance threshold. Will drop features with variance equal or
bellow this threshold

	Returns

	

	Return type

	log with feature variance, features to drop and final features

	
fklearn.tuning.parameter_tuners.grid_search_cv

	Runs several training functions with each run taken from the parameter space

	Parameters

	
	space (dict) – A dictionary with keys as parameter for the model and values as callable that return a parameter.
Callable must take no parameters and can return always a constant value.
Example:

space = {
 'learning_rate': lambda: [1e-3, 1e-2, 1e-1, 1, 10],
 'num_estimators': lambda: [20, 100, 150]
 }

	train_set (pd.DataFrame) – The training set

	param_train_fn (function(space, train_set) -> p, new_df, train_log) – A curried training function that os only function of the parameters for the model and the training set.
Example:

@curry
def param_train_fn(space, train_set):
 return xgb_classification_learner(features=["x"],
 target="target",
 learning_rate=space["learning_rate"],
 num_estimators=space["num_estimators"])(train_set)

	split_fn (function(dataset) -> list of folds) – Partially defined split function that takes a dataset and returns
a list of folds. Each fold is a Tuple of arrays. The fist array in
each tuple contains training indexes while the second array
contains validation indexes.
Examples:

out_of_time_and_space_splitter(n_splits=n_splits,
 in_time_limit=in_time_limit,
 space_column=space_column,
 time_column=time_column)

	eval_fn (function(dataset) -> eval_log) – A base evaluation function that returns a simple evaluation log. Can’t be a spited or the extractor won’t work.
Example: roc_auc_evaluator(target_column=”target”)

	save_intermediary_fn (function(log) -> save to file) – Partially defined saver function that receives a log result from a
tuning step and saves it into a file
Example: save_intermediary_result(save_path=’tuning.pkl’)

	load_intermediary_fn (function(path) -> save to file) – Partially defined load function that receives a path and loads previous logs
from this file
Example: load_intermediary_result(‘tuning.pkl’)

	warm_start_file (str) – File containing intermediary results for grid search. If this file
is present, we will perform grid search from the last combination of
parameters.

	n_jobs (int) – Number of parallel processes to spawn when evaluating a training function

	Returns

	tuning_log – A list of tuning log, each containing a training log and a validation log.

	Return type

	list of dict

	
fklearn.tuning.parameter_tuners.random_search_tuner

	Runs several training functions with each run taken from the parameter space

	Parameters

	
	space (dict) – A dictionary with keys as parameter for the model and values as callable that return a parameter.
Callable must take no parameters and can return always a constant value.
Example:

space = {
 'learning_rate': lambda: np.random.choice([1e-3, 1e-2, 1e-1, 1, 10]),
 'num_estimators': lambda: np.random.choice([20, 100, 150])
 }

	train_set (pd.DataFrame) – The training set

	param_train_fn (function(space, train_set) -> p, new_df, train_log) – A curried training function that os only function of the parameters for the model and the training set.
Example:

@curry
def param_train_fn(space, train_set):
 return xgb_classification_learner(features=["x"],
 target="target",
 learning_rate=space["learning_rate"],
 num_estimators=space["num_estimators"])(train_set)

	split_fn (function(dataset) -> list of folds) – Partially defined split function that takes a dataset and returns
a list of folds. Each fold is a Tuple of arrays. The fist array in
each tuple contains training indexes while the second array
contains validation indexes.
Examples:

out_of_time_and_space_splitter(n_splits=n_splits,
 in_time_limit=in_time_limit,
 space_column=space_column,
 time_column=time_column)

	eval_fn (function(dataset) -> eval_log) – A base evaluation function that returns a simple evaluation log. Can’t be a spited or the extractor won’t work.
Example: roc_auc_evaluator(target_column=”target”)

	iterations (int) – The number of iterations to run the parameter tuner

	random_seed (int) – Random seed

	save_intermediary_fn (function(log) -> save to file) – Partially defined saver function that receives a log result from a
tuning step and appends it into a file
Example: save_intermediary_result(save_path=’tuning.pkl’)

	n_jobs (int) – Number of parallel processes to spawn when evaluating a training function

	Returns

	tuning_log – A list of tuning log, each containing a training log and a validation log.

	Return type

	list of dict

	
fklearn.tuning.parameter_tuners.seed(seed=None)

	Seed the generator.

This method is called when RandomState is initialized. It can be
called again to re-seed the generator. For details, see RandomState.

	Parameters

	seed (int or 1-d array_like, optional) – Seed for RandomState.
Must be convertible to 32 bit unsigned integers.

See also

RandomState()

	
fklearn.tuning.samplers.remove_by_feature_importance

	Performs feature selection based on feature importance

	Parameters

	
	log (dict) – Dictionaries evaluations.

	num_removed_by_step (int (default 5)) – The number of features to remove

	Returns

	features – The remaining features after removing based on feature importance

	Return type

	list of str

	
fklearn.tuning.samplers.remove_by_feature_shuffling

	Performs feature selection based on the evaluation of the test vs the
evaluation of the test with randomly shuffled features

	Parameters

	
	log (LogType) – Dictionaries evaluations.

	predict_fn (function pandas.DataFrame -> pandas.DataFrame) – A partially defined predictor that takes a DataFrame and returns the
predicted score for this dataframe

	eval_fn (function DataFrame -> log dict) – A partially defined evaluation function that takes a dataset with prediction and
returns the evaluation logs.

	eval_data (pandas.DataFrame) – Data used to evaluate the model after shuffling

	extractor (function str -> float) – A extractor that take a string and returns the value of that string on a dict

	metric_name (str) – String with the name of the column that refers to the metric column to be extracted

	max_removed_by_step (int (default 5)) – The maximum number of features to remove. It will only consider the least max_removed_by_step in terms of
feature importance. If speed_up_by_importance=True it will first filter the least relevant feature an
shuffle only those. If speed_up_by_importance=False it will shuffle all features and drop the last
max_removed_by_step in terms of PIMP. In both cases, the features will only be removed if drop in
performance is up to the defined threshold.

	threshold (float (default 0.005)) – Threshold for model performance comparison

	speed_up_by_importance (bool (default True)) – If it should narrow search looking at feature importance first before getting PIMP importance. If True,
will only shuffle the top num_removed_by_step in terms of feature importance.

	parallel (bool (default False)) –

	nthread (int (default 1)) –

	seed (int (default 7)) – Random seed

	Returns

	features – The remaining features after removing based on feature importance

	Return type

	list of str

	
fklearn.tuning.samplers.remove_features_subsets

	Performs feature selection based on the best performing model out of
several trained models

	Parameters

	
	log_list (list of dict) – A list of log-like lists of dictionaries evaluations.

	extractor (function string -> float) – A extractor that take a string and returns the value of that string on a dict

	metric_name (str) – String with the name of the column that refers to the metric column to be extracted

	num_removed_by_step (int (default 1)) – The number of features to remove

	Returns

	keys – The remaining keys of feature sets after choosing the current best subset

	Return type

	list of str

	
fklearn.tuning.selectors.backward_subset_feature_selection(train_data: pandas.core.frame.DataFrame, param_train_fn: Callable[[pandas.core.frame.DataFrame, List[str]], Tuple[Callable[pandas.core.frame.DataFrame, pandas.core.frame.DataFrame], pandas.core.frame.DataFrame, Dict[str, Dict[str, Any]]]], features_sets: Dict[str, List[str]], split_fn: Callable[pandas.core.frame.DataFrame, Tuple[List[Tuple[pandas.core.indexes.base.Index, List[pandas.core.indexes.base.Index]]], List[Dict[str, Any]]]], eval_fn: Callable[pandas.core.frame.DataFrame, Dict[str, Union[float, Dict]]], extractor: Callable[str, float], metric_name: str, threshold: float = 0.005, num_removed_by_step: int = 3, early_stop: int = 2, iter_limit: int = 50, min_remaining_features: int = 50, save_intermediary_fn: Callable[List[Dict[str, Union[Dict[str, Any], List[Dict[str, Any]]]]], None] = None, n_jobs: int = 1) → List[List[Dict[str, Any]]]

	Performs train-evaluation iterations while testing the subsets of features
to compute statistics about the importance of each feature category

	Parameters

	
	train_data (pandas.DataFrame) – A Pandas’ DataFrame with training data

	param_train_fn (function (pandas.DataFrame, list of str) -> prediction_function, predictions_dataset, logs) – A partially defined learning function that takes a training set and a feature list and
returns a predict function, a dataset with training predictions and training
logs.

	features_sets (dict of string -> list) – Each String Key on the dict is a subset of columns from the dataset, the function will
analyse the influence of each group of features on the model performance

	split_fn (function pandas.DataFrame -> list of tuple) – Partially defined split function that takes a dataset and returns
a list of folds. Each fold is a Tuple of arrays. The fist array in
each tuple contains training indexes while the second array
contains validation indexes.

	eval_fn (function pandas.DataFrame -> dict) – A partially defined evaluation function that takes a dataset with prediction and
returns the evaluation logs.

	extractor (function str -> float) – A extractor that take a string and returns the value of that string on a dict

	metric_name (str) – String with the name of the column that refers to the metric column to be extracted

	num_removed_by_step (int (default 3)) – Number of features removed at each iteration

	threshold (float (default 0.005)) – Threshold for model performance comparison

	early_stop (int (default 2)) – Number of rounds without improvement before stopping process

	iter_limit (int (default 50)) – Maximum number of iterations before stopping

	min_remaining_features (int (default 50)) – Minimum number of features that should remain in the model,
combining num_removed_by_step and iter_limit accomplishes the same
functionality as this parameter.

	save_intermediary_fn (function(log) -> save to file) – Partially defined saver function that receives a log result from a
tuning step and appends it into a file
Example: save_intermediary_result(save_path=’tuning.pkl’)

	n_jobs (int) – Number of parallel processes to spawn.

	Returns

	logs – A list log-like lists of dictionaries evaluations. Each element of the
list is validation step of the algorithm.

	Return type

	list of list of dict

	
fklearn.tuning.selectors.feature_importance_backward_selection(train_data: pandas.core.frame.DataFrame, param_train_fn: Callable[[pandas.core.frame.DataFrame, List[str]], Tuple[Callable[pandas.core.frame.DataFrame, pandas.core.frame.DataFrame], pandas.core.frame.DataFrame, Dict[str, Dict[str, Any]]]], features: List[str], split_fn: Callable[pandas.core.frame.DataFrame, Tuple[List[Tuple[pandas.core.indexes.base.Index, List[pandas.core.indexes.base.Index]]], List[Dict[str, Any]]]], eval_fn: Callable[pandas.core.frame.DataFrame, Dict[str, Union[float, Dict]]], extractor: Callable[str, float], metric_name: str, num_removed_by_step: int = 5, threshold: float = 0.005, early_stop: int = 2, iter_limit: int = 50, min_remaining_features: int = 50, save_intermediary_fn: Callable[List[Dict[str, Union[Dict[str, Any], List[Dict[str, Any]]]]], None] = None, n_jobs: int = 1) → List[List[Dict[str, Any]]]

	Performs train-evaluation iterations while subsampling the used features
to compute statistics about feature relevance

	Parameters

	
	train_data (pandas.DataFrame) – A Pandas’ DataFrame with training data

	auxiliary_columns (list of str) – List of columns from the dataset that are not used as features but are
used for evaluation or cross validation. (id, date, etc)

	param_train_fn (function (DataFrame, List of Strings) -> prediction_function, predictions_dataset, logs) – A partially defined learning function that takes a training set and a feature list and
returns a predict function, a dataset with training predictions and training
logs.

	features (list of str) – Elements must be columns of the train_data

	split_fn (function pandas.DataFrame -> list of tuple) – Partially defined split function that takes a dataset and returns
a list of folds. Each fold is a Tuple of arrays. The fist array in
each tuple contains training indexes while the second array
contains validation indexes.

	eval_fn (function pandas.DataFrame -> dict) – A partially defined evaluation function that takes a dataset with prediction and
returns the evaluation logs.

	extractor (function str -> float) – A extractor that take a string and returns the value of that string on a dict

	metric_name (str) – String with the name of the column that refers to the metric column to be extracted

	num_removed_by_step (int (default 5)) – Number of features removed at each iteration

	threshold (float (default 0.005)) – Threshold for model performance comparison

	early_stop (int (default 2)) – Number of rounds without improvement before stopping process

	iter_limit (int (default 50)) – Maximum number of iterations before stopping

	min_remaining_features (int (default 50)) – Minimum number of features that should remain in the model,
combining num_removed_by_step and iter_limit accomplishes the same
functionality as this parameter.

	save_intermediary_fn (function(log) -> save to file) – Partially defined saver function that receives a log result from a
tuning step and appends it into a file
Example: save_intermediary_result(save_path=’tuning.pkl’)

	n_jobs (int) – Number of parallel processes to spawn.

	Returns

	Logs – A list log-like lists of dictionaries evaluations. Each element of the
list is validation step of the algorithm.

	Return type

	list of list of dict

	
fklearn.tuning.selectors.poor_man_boruta_selection(train_data: pandas.core.frame.DataFrame, test_data: pandas.core.frame.DataFrame, param_train_fn: Callable[[pandas.core.frame.DataFrame, List[str]], Tuple[Callable[pandas.core.frame.DataFrame, pandas.core.frame.DataFrame], pandas.core.frame.DataFrame, Dict[str, Dict[str, Any]]]], features: List[str], eval_fn: Callable[pandas.core.frame.DataFrame, Dict[str, Union[float, Dict]]], extractor: Callable[str, float], metric_name: str, max_removed_by_step: int = 5, threshold: float = 0.005, early_stop: int = 2, iter_limit: int = 50, min_remaining_features: int = 50, save_intermediary_fn: Callable[Dict[str, Any], None] = None, speed_up_by_importance: bool = False, parallel: bool = False, nthread: int = 1, seed: int = 7) → List[Dict[str, Any]]

	Performs train-evaluation iterations while shuffiling the used features
to compute statistics about feature relevance

	Parameters

	
	train_data (pandas.DataFrame) – A Pandas’ DataFrame with training data

	test_data (pandas.DataFrame) – A Pandas’ DataFrame with test data

	param_train_fn (function (pandas.DataFrame, list of str) -> prediction_function, predictions_dataset, logs) – A partially defined AND curried learning function that takes a training set and a feature list and
returns a predict function, a dataset with training predictions and training
logs.

	features (list of str) – Elements must be columns of the train_data

	eval_fn (function pandas.DataFrame -> dict) – A partially defined evaluation function that takes a dataset with prediction and
returns the evaluation logs.

	extractor (function str -> float) – A extractor that take a string and returns the value of that string on a dict

	metric_name (str) – String with the name of the column that refers to the metric column to be extracted

	max_removed_by_step (int (default 50)) – The maximum number of features to remove. It will only consider the least max_removed_by_step in terms of
feature importance. If speed_up_by_importance=True it will first filter the least relevant feature an
shuffle only those. If speed_up_by_importance=False it will shuffle all features and drop the last
max_removed_by_step in terms of PIMP. In both cases, the features will only be removed if drop in
performance is up to the defined threshold.

	threshold (float (default 0.005)) – Threshold for model performance comparison

	early_stop (int (default 2)) – Number of rounds without improvement before stopping process

	iter_limit (int (default 50)) – Maximum number of iterations before stopping

	min_remaining_features (int (default 50)) – Minimum number of features that should remain in the model,
combining num_removed_by_step and iter_limit accomplishes the same
functionality as this parameter.

	save_intermediary_fn (function(log) -> save to file) – Partially defined saver function that receives a log result from a
tuning step and appends it into a file
Example: save_intermediary_result(save_path=’tuning.pkl’)

	speed_up_by_importance (bool (default True)) – If it should narrow search looking at feature importance first before getting PIMP importance. If True,
will only shuffle the top num_removed_by_step in terms of feature importance.

	max_removed_by_step – If speed_up_by_importance=False, this will limit the number of features dropped by iteration. It will only
drop the max_removed_by_step features that decrease the metric by the least when dropped.

	parallel (bool (default False)) – Run shuffling and prediction in parallel. Only applies if speed_up_by_importance=False

	nthread (int (default 1)) – Number of threads to run predictions. ONly applied if speed_up_by_importance=False

	seed (int (default 7)) – random state for consistency.

	Returns

	logs – A list log-like lists of dictionaries evaluations. Each element of the
list is validation step of the algorithm.

	Return type

	list of list of dict

	
fklearn.tuning.stoppers.aggregate_stop_funcs(*stop_funcs) → Callable[List[List[Dict[str, Any]]], bool]

	Aggregate stop functions

	Parameters

	stop_funcs (list of function list of dict -> bool) –

	Returns

	l – Function that performs the Or logic of all stop_fn applied to the
logs

	Return type

	function logs -> bool

	
fklearn.tuning.stoppers.stop_by_iter_num

	Checks for logs to see if feature selection should stop

	Parameters

	
	logs (list of list of dict) – A list of log-like lists of dictionaries evaluations.

	iter_limit (int (default 50)) – Limit of Iterations

	Returns

	stop – A boolean whether to stop recursion or not

	Return type

	bool

	
fklearn.tuning.stoppers.stop_by_no_improvement

	Checks for logs to see if feature selection should stop

	Parameters

	
	logs (list of list of dict) – A list of log-like lists of dictionaries evaluations.

	extractor (function str -> float) – A extractor that take a string and returns the value of that string on a dict

	metric_name (str) – String with the name of the column that refers to the metric column to be extracted

	early_stop (int (default 3)) – Number of iteration without improval before stopping

	threshold (float (default 0.001)) – Threshold for model performance comparison

	Returns

	stop – A boolean whether to stop recursion or not

	Return type

	bool

	
fklearn.tuning.stoppers.stop_by_no_improvement_parallel

	Checks for logs to see if feature selection should stop

	Parameters

	
	logs (list of list of dict) – A list of log-like lists of dictionaries evaluations.

	extractor (function str -> float) – A extractor that take a string and returns the value of that string on a dict

	metric_name (str) – String with the name of the column that refers to the metric column to be extracted

	early_stop (int (default 3)) – Number of iterations without improvements before stopping

	threshold (float (default 0.001)) – Threshold for model performance comparison

	Returns

	stop – A boolean whether to stop recursion or not

	Return type

	bool

	
fklearn.tuning.stoppers.stop_by_num_features

	Checks for logs to see if feature selection should stop

	Parameters

	
	logs (list of list of dict) – A list of log-like lists of dictionaries evaluations.

	min_num_features (int (default 50)) – The minimun number of features the model can have before stopping

	Returns

	stop – A boolean whether to stop recursion or not

	Return type

	bool

	
fklearn.tuning.stoppers.stop_by_num_features_parallel

	Selects the best log out of a list to see if feature selection should stop

	Parameters

	
	logs (list of list of list of dict) – A list of log-like lists of dictionaries evaluations.

	extractor (function str -> float) – A extractor that take a string and returns the value of that string on a dict

	metric_name (str) – String with the name of the column that refers to the metric column to be extracted

	min_num_features (int (default 50)) – The minimun number of features the model can have before stopping

	Returns

	stop – A boolean whether to stop recursion or not

	Return type

	bool

	
fklearn.validation.evaluators.auc_evaluator

	Computes the ROC AUC score, given true label and prediction scores.

	Parameters

	
	test_data (Pandas' DataFrame) – A Pandas’ DataFrame with target and prediction scores.

	prediction_column (Strings) – The name of the column in test_data with the prediction scores.

	target_column (String) – The name of the column in test_data with the binary target.

	eval_name (String, optional (default=None)) – the name of the evaluator as it will appear in the logs.

	Returns

	log – A log-like dictionary with the ROC AUC Score

	Return type

	dict

	
fklearn.validation.evaluators.brier_score_evaluator

	Computes the Brier score, given true label and prediction scores.

	Parameters

	
	test_data (Pandas' DataFrame) – A Pandas’ DataFrame with with target and prediction scores.

	prediction_column (Strings) – The name of the column in test_data with the prediction scores.

	target_column (String) – The name of the column in test_data with the binary target.

	eval_name (String, optional (default=None)) – The name of the evaluator as it will appear in the logs.

	Returns

	log – A log-like dictionary with the Brier score.

	Return type

	dict

	
fklearn.validation.evaluators.combined_evaluators

	Combine partially applies evaluation functions.

	Parameters

	
	test_data (Pandas' DataFrame) – A Pandas’ DataFrame to apply the evaluators on

	evaluators (List) – List of evaluator functions

	Returns

	log – A log-like dictionary with the column mean

	Return type

	dict

	
fklearn.validation.evaluators.correlation_evaluator

	Computes the Pearson correlation between prediction and target.

	Parameters

	
	test_data (Pandas' DataFrame) – A Pandas’ DataFrame with with target and prediction.

	prediction_column (Strings) – The name of the column in test_data with the prediction.

	target_column (String) – The name of the column in test_data with the continuous target.

	eval_name (String, optional (default=None)) – the name of the evaluator as it will appear in the logs.

	Returns

	log – A log-like dictionary with the Pearson correlation

	Return type

	dict

	
fklearn.validation.evaluators.expected_calibration_error_evaluator

	Computes the expected calibration error (ECE), given true label and prediction scores.
See “On Calibration of Modern Neural Networks”(https://arxiv.org/abs/1706.04599) for more information.

The ECE is the distance between the actuals observed frequency and the predicted probabilities,
for a given choice of bins.

Perfect calibration results in a score of 0.

	For example, if for the bin [0, 0.1] we have the three data points:

	
	prediction: 0.1, actual: 0

	prediction: 0.05, actual: 1

	prediction: 0.0, actual 0

Then the predicted average is (0.1 + 0.05 + 0.00)/3 = 0.05, and the empirical frequency is (0 + 1 + 0)/3 = 1/3.
Therefore, the distance for this bin is:

|1/3 - 0.05| ~= 0.28.

Graphical intuition:

Actuals (empirical frequency between 0 and 1)
| *
| *
| *
 ______ Predictions (probabilties between 0 and 1)

	Parameters

	
	test_data (Pandas' DataFrame) – A Pandas’ DataFrame with with target and prediction scores.

	prediction_column (Strings) – The name of the column in test_data with the prediction scores.

	target_column (String) – The name of the column in test_data with the binary target.

	eval_name (String, optional (default=None)) – The name of the evaluator as it will appear in the logs.

	n_bins (Int (default=100)) – The number of bins.
This is a trade-off between the number of points in each bin and the probability range they span.
You want a small enough range that still contains a significant number of points for the distance to work.

	bin_choice (String (default="count")) – Two possibilities:
“count” for equally populated bins (e.g. uses pandas.qcut for the bins)
“prob” for equally spaced probabilities (e.g. uses pandas.cut for the bins),
with distance weighed by the number of samples in each bin.

	Returns

	log – A log-like dictionary with the expected calibration error.

	Return type

	dict

	
fklearn.validation.evaluators.fbeta_score_evaluator

	Computes the F-beta score, given true label and prediction scores.

	Parameters

	
	test_data (pandas.DataFrame) – A Pandas’ DataFrame with with target and prediction scores.

	threshold (float) –
	A threshold for the prediction column above which samples

	will be classified as 1

	beta (float) – The beta parameter determines the weight of precision in the combined score.
beta < 1 lends more weight to precision, while beta > 1 favors recall
(beta -> 0 considers only precision, beta -> inf only recall).

	prediction_column (str) – The name of the column in test_data with the prediction scores.

	target_column (str) – The name of the column in test_data with the binary target.

	eval_name (str, optional (default=None)) – the name of the evaluator as it will appear in the logs.

	Returns

	log – A log-like dictionary with the Precision Score

	Return type

	dict

	
fklearn.validation.evaluators.generic_sklearn_evaluator(name_prefix: str, sklearn_metric: Callable[..., float]) → Callable[..., Dict[str, Union[float, Dict]]]

	Returns an evaluator build from a metric from sklearn.metrics

	Parameters

	
	name_prefix (str) – The default name of the evaluator will be name_prefix + target_column.

	sklearn_metric (Callable) – Metric function from sklearn.metrics. It should take as parameters y_true, y_score, kwargs.

	Returns

	eval_fn – An evaluator function that uses the provided metric

	Return type

	Callable

	
fklearn.validation.evaluators.hash_evaluator

	Computes the hash of a pandas dataframe, filtered by hash columns. The
purpose is to uniquely identify a dataframe, to be able to check if two
dataframes are equal or not.

	Parameters

	
	test_data (Pandas' DataFrame) – A Pandas’ DataFrame to be hashed.

	hash_columns (List[str], optional (default=None)) – A list of column names to filter the dataframe before hashing. If None,
it will hash the dataframe with all the columns

	eval_name (String, optional (default=None)) – the name of the evaluator as it will appear in the logs.

	consider_index (bool, optional (default=False)) – If true, will consider the index of the dataframe to calculate the hash.
The default behaviour will ignore the index and just hash the content of
the features.

	Returns

	log – A log-like dictionary with the hash of the dataframe

	Return type

	dict

	
fklearn.validation.evaluators.logloss_evaluator

	Computes the logloss score, given true label and prediction scores.

	Parameters

	
	test_data (Pandas' DataFrame) – A Pandas’ DataFrame with with target and prediction scores.

	prediction_column (Strings) – The name of the column in test_data with the prediction scores.

	target_column (String) – The name of the column in test_data with the binary target.

	eval_name (String, optional (default=None)) – the name of the evaluator as it will appear in the logs.

	Returns

	log – A log-like dictionary with the logloss score.

	Return type

	dict

	
fklearn.validation.evaluators.mean_prediction_evaluator

	Computes mean for the specified column.

	Parameters

	
	test_data (Pandas' DataFrame) – A Pandas’ DataFrame with a column to compute the mean

	prediction_column (Strings) – The name of the column in test_data to compute the mean.

	eval_name (String, optional (default=None)) – the name of the evaluator as it will appear in the logs.

	Returns

	log – A log-like dictionary with the column mean

	Return type

	dict

	
fklearn.validation.evaluators.mse_evaluator

	Computes the Mean Squared Error, given true label and predictions.

	Parameters

	
	test_data (Pandas' DataFrame) – A Pandas’ DataFrame with with target and predictions.

	prediction_column (Strings) – The name of the column in test_data with the predictions.

	target_column (String) – The name of the column in test_data with the continuous target.

	eval_name (String, optional (default=None)) – the name of the evaluator as it will appear in the logs.

	Returns

	log – A log-like dictionary with the MSE Score

	Return type

	dict

	
fklearn.validation.evaluators.ndcg_evaluator

	Computes the Normalized Discount Cumulative Gain (NDCG) between
of the original and predicted rankings:
https://en.wikipedia.org/wiki/Discounted_cumulative_gain

	Parameters

	
	test_data (Pandas DataFrame) – A Pandas’ DataFrame with with target and prediction scores.

	prediction_column (String) – The name of the column in test_data with the prediction scores.

	target_column (String) – The name of the column in test_data with the target.

	k (int, optional (default=None)) – The size of the rank that is used to fit (highest k scores) the NDCG score. If None, use all outputs.
Otherwise, this value must be between [1, len(test_data[prediction_column])].

	exponential_gain (bool (default=True)) – If False, then use the linear gain. The exponential gain places a stronger emphasis on retrieving
relevant items. If the relevance of these items is binary values in {0,1}, then the two approaches
are the same, which is the linear case.

	eval_name (String, optional (default=None)) – The name of the evaluator as it will appear in the logs.

	Returns

	log – A log-like dictionary with the NDCG score, float in [0,1].

	Return type

	dict

	
fklearn.validation.evaluators.permutation_evaluator

	Permutation importance evaluator.
It works by shuffling one or more features on test_data dataframe,
getting the preditions with predict_fn, and evaluating the results with eval_fn.

	Parameters

	
	test_data (Pandas' DataFrame) – A Pandas’ DataFrame with with target, predictions and features.

	predict_fn (function DataFrame -> DataFrame) – Function that receives the input dataframe and returns a dataframe with the pipeline predictions.

	eval_fn (function DataFrame -> Log Dict) – A partially applied evaluation function.

	baseline (bool) – Also evaluates the predict_fn on an unshuffled baseline.

	features (List of strings) – The features to shuffle and then evaluate eval_fn on the shuffled results.
The default case shuffles all dataframe columns.

	shuffle_all_at_once (bool) – Shuffle all features at once instead of one per turn.

	random_state (int) – Seed to be used by the random number generator.

	eval_name (String, optional (default=None)) – the name of the evaluator as it will appear in the logs.

	Returns

	log – A log-like dictionary with evaluation results by feature shuffle.
Use the permutation_extractor for better visualization of the results.

	Return type

	dict

	
fklearn.validation.evaluators.pr_auc_evaluator

	Computes the PR AUC score, given true label and prediction scores.

	Parameters

	
	test_data (Pandas' DataFrame) – A Pandas’ DataFrame with target and prediction scores.

	prediction_column (Strings) – The name of the column in test_data with the prediction scores.

	target_column (String) – The name of the column in test_data with the binary target.

	eval_name (String, optional (default=None)) – the name of the evaluator as it will appear in the logs.

	Returns

	

	Return type

	A log-like dictionary with the PR AUC Score

	
fklearn.validation.evaluators.precision_evaluator

	Computes the precision score, given true label and prediction scores.

	Parameters

	
	test_data (pandas.DataFrame) – A Pandas’ DataFrame with with target and prediction scores.

	threshold (float) –
	A threshold for the prediction column above which samples

	will be classified as 1

	prediction_column (str) – The name of the column in test_data with the prediction scores.

	target_column (str) – The name of the column in test_data with the binary target.

	eval_name (str, optional (default=None)) – the name of the evaluator as it will appear in the logs.

	Returns

	log – A log-like dictionary with the Precision Score

	Return type

	dict

	
fklearn.validation.evaluators.r2_evaluator

	Computes the R2 score, given true label and predictions.

	Parameters

	
	test_data (Pandas' DataFrame) – A Pandas’ DataFrame with with target and prediction.

	prediction_column (Strings) – The name of the column in test_data with the prediction.

	target_column (String) – The name of the column in test_data with the continuous target.

	eval_name (String, optional (default=None)) – the name of the evaluator as it will appear in the logs.

	Returns

	log – A log-like dictionary with the R2 Score

	Return type

	dict

	
fklearn.validation.evaluators.recall_evaluator

	Computes the recall score, given true label and prediction scores.

	Parameters

	
	test_data (pandas.DataFrame) – A Pandas’ DataFrame with with target and prediction scores.

	threshold (float) –
	A threshold for the prediction column above which samples

	will be classified as 1

	prediction_column (str) – The name of the column in test_data with the prediction scores.

	target_column (str) – The name of the column in test_data with the binary target.

	eval_name (str, optional (default=None)) – the name of the evaluator as it will appear in the logs.

	Returns

	log – A log-like dictionary with the Precision Score

	Return type

	dict

	
fklearn.validation.evaluators.roc_auc_evaluator

	Computes the ROC AUC score, given true label and prediction scores.

	Parameters

	
	test_data (Pandas' DataFrame) – A Pandas’ DataFrame with target and prediction scores.

	prediction_column (Strings) – The name of the column in test_data with the prediction scores.

	target_column (String) – The name of the column in test_data with the binary target.

	eval_name (String, optional (default=None)) – the name of the evaluator as it will appear in the logs.

	Returns

	log – A log-like dictionary with the ROC AUC Score

	Return type

	dict

	
fklearn.validation.evaluators.spearman_evaluator

	Computes the Spearman correlation between prediction and target.
The Spearman correlation evaluates the rank order between two variables:
https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient

	Parameters

	
	test_data (Pandas' DataFrame) – A Pandas’ DataFrame with with target and prediction.

	prediction_column (Strings) – The name of the column in test_data with the prediction.

	target_column (String) – The name of the column in test_data with the continuous target.

	eval_name (String, optional (default=None)) – the name of the evaluator as it will appear in the logs.

	Returns

	log – A log-like dictionary with the Spearman correlation

	Return type

	dict

	
fklearn.validation.evaluators.split_evaluator

	Splits the dataset into the categories in split_col and evaluate
model performance in each split. Useful when you belive the model
performs differs in a sub population defined by split_col.

	Parameters

	
	test_data (Pandas' DataFrame) – A Pandas’ DataFrame with with target and predictions.

	eval_fn (function DataFrame -> Log Dict) – A partially applied evaluation function.

	split_col (String) – The name of the column in test_data to split by.

	split_values (Array, optional (default=None)) – An Array to split by. If not provided, test_data[split_col].unique()
will be used.

	eval_name (String, optional (default=None)) – the name of the evaluator as it will appear in the logs.

	Returns

	log – A log-like dictionary with evaluation results by split.

	Return type

	dict

	
fklearn.validation.evaluators.temporal_split_evaluator

	Splits the dataset into the temporal categories by time_col and evaluate
model performance in each split.

The splits are implicitly defined by the time_format.
For example, for the default time format (“%Y-%m”), we will split by year and month.

	Parameters

	
	test_data (Pandas' DataFrame) – A Pandas’ DataFrame with with target and predictions.

	eval_fn (function DataFrame -> Log Dict) – A partially applied evaluation function.

	time_col (string) – The name of the column in test_data to split by.

	time_format (string) – The way to format the time_col into temporal categories.

	split_values (Array of string, optional (default=None)) – An array of date formatted strings to split the evaluation by.
If not provided, all unique formatted dates will be used.

	eval_name (String, optional (default=None)) – the name of the evaluator as it will appear in the logs.

	Returns

	log – A log-like dictionary with evaluation results by split.

	Return type

	dict

	
fklearn.validation.splitters.forward_stability_curve_time_splitter

	Splits the data into temporal buckets with both the training and testing folds both moving forward.
The folds move forward by a fixed timedelta step.
Optionally, there can be a gap between the end of the training period and the start of the holdout period.

Similar to the stability curve time splitter, with the difference that the training period also
moves forward with each fold.

The clearest use case is to evaluate a periodic re-training framework.

	Parameters

	
	train_data (pandas.DataFrame) – A Pandas’ DataFrame that will be split for stability curve estimation.

	training_time_start (datetime.datetime or str) – Date for the start of the training period.
If move_training_start_with_steps is True, each step will increase this date by step.

	training_time_end (datetime.datetime or str) – Date for the end of the training period.
Each step increases this date by step.

	time_column (str) – The name of the Date column of train_data.

	holdout_gap (datetime.timedelta) – Timedelta of the gap between the end of the training period and the start of the validation period.

	holdout_size (datetime.timedelta) – Timedelta of the range between the start and the end of the holdout period.

	step (datetime.timedelta) – Timedelta that shifts both the training period and the holdout period by this value.

	move_training_start_with_steps (bool) – If True, the training start date will increase by step for each fold.
If False, the training start date remains fixed at the training_time_start value.

	Returns

	
	Folds (list of tuples) – A list of folds. Each fold is a Tuple of arrays.
The fist array in each tuple contains training indexes while the second
array contains validation indexes.

	logs (list of dict) – A list of logs, one for each fold

	
fklearn.validation.splitters.k_fold_splitter

	Makes K random train/test split folds for cross validation.
The folds are made so that every sample is used at least once for
evaluating and K-1 times for training.

If stratified is set to True, the split preserves the distribution of stratify_column

	Parameters

	
	train_data (pandas.DataFrame) – A Pandas’ DataFrame that will be split into K-Folds for cross validation.

	n_splits (int) – The number of folds K for the K-Fold cross validation strategy.

	random_state (int) – Seed to be used by the random number generator.

	stratify_column (string) – Column name in train_data to be used for stratified split.

	Returns

	
	Folds (list of tuples) – A list of folds. Each fold is a Tuple of arrays.
The fist array in each tuple contains training indexes while the second
array contains validation indexes.

	logs (list of dict) – A list of logs, one for each fold

	
fklearn.validation.splitters.out_of_time_and_space_splitter

	Makes K grouped train/test split folds for cross validation.
The folds are made so that every ID is used at least once for
evaluating and K-1 times for training. Also, for each fold, evaluation
will always be out-of-ID and out-of-time.

	Parameters

	
	train_data (pandas.DataFrame) – A Pandas’ DataFrame that will be split into K out-of-time and ID
folds for cross validation.

	n_splits (int) – The number of folds K for the K-Fold cross validation strategy.

	in_time_limit (str or datetime.datetime) – A String representing the end time of the training data.
It should be in the same format as the Date column in train_data.

	time_column (str) – The name of the Date column of train_data.

	space_column (str) – The name of the ID column of train_data.

	holdout_gap (datetime.timedelta) – Timedelta of the gap between the end of the training period and the start of the validation period.

	Returns

	
	Folds (list of tuples) – A list of folds. Each fold is a Tuple of arrays.
The fist array in each tuple contains training indexes while the second
array contains validation indexes.

	logs (list of dict) – A list of logs, one for each fold

	
fklearn.validation.splitters.reverse_time_learning_curve_splitter

	Splits the data into temporal buckets given by the specified frequency.
Uses a fixed out-of-ID and time hold out set for every fold.
Training size increases per fold, with less recent data being added in each fold.
Useful for inverse learning curve validation, that is, for seeing how hold out
performance increases as the training size increases with less recent data.

	Parameters

	
	train_data (pandas.DataFrame) – A Pandas’ DataFrame that will be split inverse learning curve estimation.

	time_column (str) – The name of the Date column of train_data.

	training_time_limit (str) – The Date String for the end of the testing period. Should be of the same
format as time_column.

	lower_time_limit (str) – A Date String for the begining of the training period. This allows limiting
the learning curve from bellow, avoiding heavy computation with very old data.

	freq (str) – The temporal frequency.
See: http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases

	holdout_gap (datetime.timedelta) – Timedelta of the gap between the end of the training period and the start of the validation period.

	min_samples (int) – The minimum number of samples required in the split to keep the split.

	Returns

	
	Folds (list of tuples) – A list of folds. Each fold is a Tuple of arrays.
The fist array in each tuple contains training indexes while the second
array contains validation indexes.

	logs (list of dict) – A list of logs, one for each fold

	
fklearn.validation.splitters.spatial_learning_curve_splitter

	Splits the data for a spatial learning curve. Progressively adds more and
more examples to the training in order to verify the impact of having more
data available on a validation set.

The validation set starts after the training set, with an optional time gap.

Similar to the temporal learning curves, but with spatial increases in the training set.

	Parameters

	
	train_data (pandas.DataFrame) – A Pandas’ DataFrame that will be split for learning curve estimation.

	space_column (str) – The name of the ID column of train_data.

	time_column (str) – The name of the temporal column of train_data.

	training_limit (datetime or str) – The date limiting the training (after which the holdout begins).

	holdout_gap (timedelta) – The gap between the end of training and the start of the holdout.
If you have censored data, use a gap similar to the censor time.

	train_percentages (list or tuple of floats) – A list containing the percentages of IDs to use in the training.
Defaults to (0.25, 0.5, 0.75, 1.0). For example: For the default value,
there would be four model trainings, containing respectively 25%, 50%,
75%, and 100% of the IDs that are not part of the held out set.

	random_state (int) – A seed for the random number generator that shuffles the IDs.

	Returns

	
	Folds (list of tuples) – A list of folds. Each fold is a Tuple of arrays.
The fist array in each tuple contains training indexes while the second
array contains validation indexes.

	logs (list of dict) – A list of logs, one for each fold

	
fklearn.validation.splitters.stability_curve_time_in_space_splitter

	Splits the data into temporal buckets given by the specified frequency.
Training set is fixed before hold out and uses a rolling window hold out set.
Each fold moves the hold out further into the future.
Useful to see how model performance degrades as the training data gets more
outdated. Folds are made so that ALL IDs in the holdout also appear in
the training set.

	Parameters

	
	train_data (pandas.DataFrame) – A Pandas’ DataFrame that will be split for stability curve estimation.

	training_time_limit (str) – The Date String for the end of the testing period. Should be of the same
format as time_column.

	space_column (str) – The name of the ID column of train_data.

	time_column (str) – The name of the Date column of train_data.

	freq (str) – The temporal frequency.
See: http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases

	space_hold_percentage (float (default=0.5)) – The proportion of hold out IDs.

	random_state (int) – A seed for the random number generator for ID sampling across train and
hold out sets.

	min_samples (int) – The minimum number of samples required in the split to keep the split.

	Returns

	
	Folds (list of tuples) – A list of folds. Each fold is a Tuple of arrays.
The fist array in each tuple contains training indexes while the second
array contains validation indexes.

	logs (list of dict) – A list of logs, one for each fold

	
fklearn.validation.splitters.stability_curve_time_space_splitter

	Splits the data into temporal buckets given by the specified frequency.
Training set is fixed before hold out and uses a rolling window hold out set.
Each fold moves the hold out further into the future.
Useful to see how model performance degrades as the training data gets more
outdated. Folds are made so that NONE of the IDs in the holdout appears in
the training set.

	Parameters

	
	train_data (pandas.DataFrame) – A Pandas’ DataFrame that will be split for stability curve estimation.

	training_time_limit (str) – The Date String for the end of the testing period. Should be of the same
format as time_column

	space_column (str) – The name of the ID column of train_data

	time_column (str) – The name of the Date column of train_data

	freq (str) – The temporal frequency.
See: http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases

	space_hold_percentage (float) – The proportion of hold out IDs

	random_state (int) – A seed for the random number generator for ID sampling across train and
hold out sets.

	min_samples (int) – The minimum number of samples required in the split to keep the split.

	Returns

	
	Folds (list of tuples) – A list of folds. Each fold is a Tuple of arrays.
The fist array in each tuple contains training indexes while the second
array contains validation indexes.

	logs (list of dict) – A list of logs, one for each fold

	
fklearn.validation.splitters.stability_curve_time_splitter

	Splits the data into temporal buckets given by the specified frequency.
Training set is fixed before hold out and uses a rolling window hold out set.
Each fold moves the hold out further into the future.
Useful to see how model performance degrades as the training data gets more
outdated. Training and holdout sets can have same IDs

	Parameters

	
	train_data (pandas.DataFrame) – A Pandas’ DataFrame that will be split for stability curve estimation.

	training_time_limit (str) – The Date String for the end of the testing period. Should be of the same
format as time_column.

	time_column (str) – The name of the Date column of train_data.

	freq (str) – The temporal frequency.
See: http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases

	min_samples (int) – The minimum number of samples required in a split to keep it.

	Returns

	
	Folds (list of tuples) – A list of folds. Each fold is a Tuple of arrays.
The fist array in each tuple contains training indexes while the second
array contains validation indexes.

	logs (list of dict) – A list of logs, one for each fold

	
fklearn.validation.splitters.time_and_space_learning_curve_splitter

	Splits the data into temporal buckets given by the specified frequency.
Uses a fixed out-of-ID and time hold out set for every fold.
Training size increases per fold, with more recent data being added in each fold.
Useful for learning curve validation, that is, for seeing how hold out performance
increases as the training size increases with more recent data.

	Parameters

	
	train_data (pandas.DataFrame) – A Pandas’ DataFrame that will be split for learning curve estimation.

	training_time_limit (str) – The Date String for the end of the testing period. Should be of the same
format as time_column.

	space_column (str) – The name of the ID column of train_data.

	time_column (str) – The name of the Date column of train_data.

	freq (str) – The temporal frequency.
See: http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases

	space_hold_percentage (float) – The proportion of hold out IDs.

	holdout_gap (datetime.timedelta) – Timedelta of the gap between the end of the training period and the start of the validation period.

	random_state (int) – A seed for the random number generator for ID sampling across train and
hold out sets.

	min_samples (int) – The minimum number of samples required in the split to keep the split.

	Returns

	
	Folds (list of tuples) – A list of folds. Each fold is a Tuple of arrays.
The fist array in each tuple contains training indexes while the second
array contains validation indexes.

	logs (list of dict) – A list of logs, one for each fold

	
fklearn.validation.splitters.time_learning_curve_splitter

	Splits the data into temporal buckets given by the specified frequency.

Uses a fixed out-of-ID and time hold out set for every fold.
Training size increases per fold, with more recent data being added in each fold.
Useful for learning curve validation, that is, for seeing how hold out performance
increases as the training size increases with more recent data.

	Parameters

	
	train_data (pandas.DataFrame) – A Pandas’ DataFrame that will be split for learning curve estimation.

	training_time_limit (str) – The Date String for the end of the testing period. Should be of the same
format as time_column.

	time_column (str) – The name of the Date column of train_data.

	freq (str) – The temporal frequency.
See: http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases

	holdout_gap (datetime.timedelta) – Timedelta of the gap between the end of the training period and the start of the validation period.

	min_samples (int) – The minimum number of samples required in the split to keep the split.

	Returns

	
	Folds (list of tuples) – A list of folds. Each fold is a Tuple of arrays.
The fist array in each tuple contains training indexes while the second
array contains validation indexes.

	logs (list of dict) – A list of logs, one for each fold

	
fklearn.validation.validator.parallel_validator

	Splits the training data into folds given by the split function and
performs a train-evaluation sequence on each fold. Tries to run each
fold in parallel using up to n_jobs processes.

	Parameters

	
	train_data (pandas.DataFrame) – A Pandas’ DataFrame with training data

	split_fn (function pandas.DataFrame -> list of tuple) – Partially defined split function that takes a dataset and returns
a list of folds. Each fold is a Tuple of arrays. The fist array in
each tuple contains training indexes while the second array
contains validation indexes.

	train_fn (function pandas.DataFrame -> prediction_function, predictions_dataset, logs) – A partially defined learning function that takes a training set and
returns a predict function, a dataset with training predictions and training
logs.

	eval_fn (function pandas.DataFrame -> dict) – A partially defined evaluation function that takes a dataset with prediction and
returns the evaluation logs.

	n_jobs (int) – Number of parallel processes to spawn.

	predict_oof (bool) – Whether to return out of fold predictions on the logs

	Returns

	

	Return type

	A list log-like dictionary evaluations.

	
fklearn.validation.validator.validator

	Splits the training data into folds given by the split function and
performs a train-evaluation sequence on each fold by calling
validator_iteration.

	Parameters

	
	train_data (pandas.DataFrame) – A Pandas’ DataFrame with training data

	split_fn (function pandas.DataFrame -> list of tuple) – Partially defined split function that takes a dataset and returns
a list of folds. Each fold is a Tuple of arrays. The fist array in
each tuple contains training indexes while the second array
contains validation indexes.

	train_fn (function pandas.DataFrame -> prediction_function, predictions_dataset, logs) – A partially defined learning function that takes a training set and
returns a predict function, a dataset with training predictions and training
logs.

	eval_fn (function pandas.DataFrame -> dict) – A partially defined evaluation function that takes a dataset with prediction and
returns the evaluation logs.

	perturb_fn_train (PerturbFnType) – A partially defined corruption function that takes a dataset and returns
a corrupted dataset. Perturbation applied at train-time.

	perturb_fn_test (PerturbFnType) – A partially defined corruption function that takes a dataset and returns
a corrupted dataset. Perturbation applied at test-time.

	predict_oof (bool) – Whether to return out of fold predictions on the logs

	Returns

	

	Return type

	A list of log-like dictionary evaluations.

	
fklearn.validation.validator.validator_iteration(data: pandas.core.frame.DataFrame, train_index: pandas.core.indexes.base.Index, test_indexes: pandas.core.indexes.base.Index, fold_num: int, train_fn: Callable[pandas.core.frame.DataFrame, Tuple[Callable[pandas.core.frame.DataFrame, pandas.core.frame.DataFrame], pandas.core.frame.DataFrame, Dict[str, Dict[str, Any]]]], eval_fn: Callable[pandas.core.frame.DataFrame, Dict[str, Union[float, Dict]]], predict_oof: bool = False) → Dict[str, Any]

	Perform an iteration of train test split, training and evaluation.

	Parameters

	
	data (pandas.DataFrame) – A Pandas’ DataFrame with training and testing subsets

	train_index (numpy.Array) – The index of the training subset of data.

	test_indexes (list of numpy.Array) – A list of indexes of the testing subsets of data.

	fold_num (int) – The number of the fold in the current iteration

	train_fn (function pandas.DataFrame -> prediction_function, predictions_dataset, logs) – A partially defined learning function that takes a training set and
returns a predict function, a dataset with training predictions and training
logs.

	eval_fn (function pandas.DataFrame -> dict) – A partially defined evaluation function that takes a dataset with prediction and
returns the evaluation logs.

	predict_oof (bool) – Whether to return out of fold predictions on the logs

	Returns

	

	Return type

	A log-like dictionary evaluations.

Contributing

Table of contents:

	Where to start?

	Getting Help

	Working with the code

	Version control

	Fork

	Development env

	Creating the virtualenv

	Install the requirements

	Run tests

	Creating a development branch

	Contribute with code

	Code standards

	Run tests

	Document your code

	Contribute with documentation

	Docstrings

	Documentation

	Build documentation

	Send you changes to Fklearn repo

	Commit your changes

	Push the changes

	Create a pull request

	When my code will be merged?

	Versioning

Where to start?

We love pull requests(and issues) from everyone.
We recommend you to take a look at the project, follow the examples before contribute with code.

By participating in this project, you agree to abide by our code of conduct.

Getting Help

If you found a bug or need a new feature, you can submit an issue [https://github.com/nubank/fklearn/issues].

If you would like to chat with other contributors to fklearn, consider joining the Gitter [https://gitter.im/fklearn-python].

Working with the code

Now that that you already understand how the project works, maybe it’s time to fix something, add and enhancement, or write new documentation.
It’s time to understand how we send contributions.

Version control

This project is hosted in Github [https://github.com/nubank/fklearn], this way, to contribute with it you need an account, you sign up here <https://github.com/signup/free>_
We use git as version control, so it’s good to understand basic git flows before send new code. You can follow Github Help [https://help.github.com/en] to understand how to work with git.

Fork

To write new code, you will iteract with your own fork, so go to fklearn repo page [https://github.com/nubank/fklearn], and hit the Fork button. This will create a copy of our repository in your account. To clone the repository in your machine:

git clone git@github.com:your-username/fklearn.git
git remote add upstream https://github.com/nubank/fklearn.git

This will create a folder called fklearn and will connect to the upstream(main repo).

Development env

We recommend you to create a virtualenv before starts to work with the code.
And be able to run all tests locally before start to write new code.

Creating the virtualenv

Use an ENV_DIR of you choice. We are using ~/venvs
python3.6 -m venv ~/venvs/fklearn-dev
source ~/venvs/fklearn-dev/activate

Install the requirements

This command will install all the test dependencies. To install the package itself follow install instruction [https://fklearn.readthedocs.io/en/latest/getting_started.html#installation].

pip install -qe .[test_deps]

Run tests

The following command should run all tests, if every test pass, you should be ready to start develop new stuff

python -m pytest tests/

Creating a development branch

First we should check if you master is up to date with the latest version of the repo

git checkout master
git pull upstream master --ff-only

git checkout -b name-of-your-bugfix-or-feature

If you already have a branch, and you want to update with the upstream master

git checkout name-of-your-bugfix-or-feature
git fetch upstream
git merge upstream/master

Contribute with code

In this session we’ll guide you on how to contribute with the code. This is a guide if you want to fix or implement a new feature.

Code standards

This project is compatible only with python3.6 and follows the pep8 style [https://www.python.org/dev/peps/pep-0008/]
And we use this import formatting [https://google.github.io/styleguide/pyguide.html?showone=Imports_formatting#313-imports-formatting]

In order to check if your code follow our style, you can run from the repo root dir:

python -m pip install -q flake8
python -m flake8 \
--ignore=E731,W503 \
--filename=*.py \
--exclude=__init__.py \
--show-source \
--statistics \
--max-line-length=120 \
src/ tests/

Run tests

After you finish your feature development or bug fix, you should run your tests, using:

python -m pytest tests/

Or if want to run only one test:

python -m pytest tests/test-file-name.py::test_method_name

You should always write tests for your features, you can look at the other tests to have a better idea how we implement them.
As test framework we use pytest [https://docs.pytest.org/en/latest/]

Document your code

All methods should have type annotations, this allow us to know what that method expect as parameters, and what is the output.
You can learn more about it in typing docs [https://docs.python.org/3.6/library/typing.html]

To document your code you should add docstrings, all methods with docstring will appear in this documentation’s api file.
If you created a new file, you may need to add it to the api.rst following the structure

 Folder Name

 File name (fklearn.folder_name.file_name)
 ###

 ..currentmodule:: fklearn.folder_name.file_name

 .. autosummary::
 method_name

The docstrings should follow this format

.. code-block:: none

 """
 Brief introduction of method

 More info about it

 Parameters

 parameter_1 : type
 Parameter description

 Returns

 value_1 : type
 Value description
 """

Contribute with documentation

You can add, fix documenation of: code(docstrings) or this documentation files.

Docstrings

Follow the same structure we explained in code contribution [https://fklearn.readthedocs.io/en/latest/contributing.html#document-your-code]

Documentation

This documentation is written using rst(reStructuredText) you can learn more about it in rst docs [http://docutils.sourceforge.net/rst.html]
When you make changes in the docs, please make sure, we still be able to build it without any issue.

Build documentation

From docs/ folder, install requirments.txt and run

make html

This command will build the documentation inside docs/build/html and you can check locally how it looks, and if everything worked.

Send you changes to Fklearn repo

Commit your changes

You should think about a commit as a unit of change. So it should describe a small change you did in the project.

The following command will list all files you changed:

git status

To choose which files will be added to the commit:

git add path/to/the/file/name.extension

And to write a commit message:

This command will open your text editor to write commit messages

git commit

This will add a commit only with subject

git commit -m "My commit message"

We recommend this guide to write better commit messages [https://chris.beams.io/posts/git-commit/]

Push the changes

After you write all your commit messages, decribing what you did, it’s time to send to your remote repo.

git push origin name-of-your-bugfix-or-feature

Create a pull request

Now that you already finished your job, you should:
- Go to your repo’s Github page
- Click New pull request
- Choose the branch you want to merge
- Review the files that will be merged
- Click Create pull request
- Fill the template
- Tag your PR, add the category(bug, enhancement, documentation…) and a review-request label

When my code will be merged?

All code will be reviewed, we require at least one code owner review, and any other person review.
We will usually do weekly releases of the package if we have any new features, that are already reviewed.

Versioning

Use Semantic versioning to set library versions, more info: semver.org [https://semver.org/] But basically this means:

	MAJOR version when you make incompatible API changes,

	MINOR version when you add functionality in a backwards-compatible manner, and

	PATCH version when you make backwards-compatible bug fixes.

(from semver.org summary)

You don’t need to set the version in your PR, we’ll take care of this when we decide to release a new version.
Today the process is:

	Create a new milestone X.Y.Z (maintainers only)

	Some PR/issues are attibuted to this new milestone

	Merge all the related PRs (maintainers only)

	Create a new PR: Bump package to X.Y.Z This PR update the version and the change log (maintainers only)

	Create a tag X.Y.Z (maintainers only)

This last step will trigger the CI to build the package and send the version to pypi

When we add new functionality, the past version will be moved to another branch. For example, if we’re at version 1.13.7 and a new functionality is implemented,
we create a new branch 1.13.x, and protect it(this way we can’t delete it), the new code is merged to master branch, and them we create the tag 1.14.0

This way we can always fix a past version, opening PRs from 1.13.x branch.

 Python Module Index

 f

 		 	

 		
 f	

 	[image: -]
 	
 fklearn	

 	
 	
 fklearn.data.datasets	

 	
 	
 fklearn.metrics.pd_extractors	

 	
 	
 fklearn.preprocessing.rebalancing	

 	
 	
 fklearn.preprocessing.splitting	

 	
 	
 fklearn.training.calibration	

 	
 	
 fklearn.training.classification	

 	
 	
 fklearn.training.ensemble	

 	
 	
 fklearn.training.imputation	

 	
 	
 fklearn.training.pipeline	

 	
 	
 fklearn.training.regression	

 	
 	
 fklearn.training.transformation	

 	
 	
 fklearn.training.unsupervised	

 	
 	
 fklearn.training.utils	

 	
 	
 fklearn.tuning.model_agnostic_fc	

 	
 	
 fklearn.tuning.parameter_tuners	

 	
 	
 fklearn.tuning.samplers	

 	
 	
 fklearn.tuning.selectors	

 	
 	
 fklearn.tuning.stoppers	

 	
 	
 fklearn.tuning.utils	

 	
 	
 fklearn.types.types	

 	
 	
 fklearn.validation.evaluators	

 	
 	
 fklearn.validation.splitters	

 	
 	
 fklearn.validation.validator	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | V
 | X

A

 	
 	aggregate_stop_funcs() (in module fklearn.tuning.stoppers)

 	
 	apply_replacements() (in module fklearn.training.transformation)

 	auc_evaluator (in module fklearn.validation.evaluators)

B

 	
 	backward_subset_feature_selection() (in module fklearn.tuning.selectors)

 	
 	brier_score_evaluator (in module fklearn.validation.evaluators)

 	build_pipeline() (in module fklearn.training.pipeline)

C

 	
 	capper (in module fklearn.training.transformation)

 	catboost_classification_learner (in module fklearn.training.classification)

 	catboost_regressor_learner (in module fklearn.training.regression)

 	combined_evaluators (in module fklearn.validation.evaluators)

 	
 	correlation_evaluator (in module fklearn.validation.evaluators)

 	correlation_feature_selection (in module fklearn.tuning.model_agnostic_fc)

 	count_categorizer (in module fklearn.training.transformation)

 	custom_supervised_model_learner (in module fklearn.training.regression)

 	custom_transformer (in module fklearn.training.transformation)

D

 	
 	discrete_ecdfer (in module fklearn.training.transformation)

E

 	
 	ecdfer (in module fklearn.training.transformation)

 	
 	expand_features_encoded() (in module fklearn.training.utils)

 	expected_calibration_error_evaluator (in module fklearn.validation.evaluators)

F

 	
 	fbeta_score_evaluator (in module fklearn.validation.evaluators)

 	feature_importance_backward_selection() (in module fklearn.tuning.selectors)

 	fklearn.data.datasets (module)

 	fklearn.metrics.pd_extractors (module)

 	fklearn.preprocessing.rebalancing (module)

 	fklearn.preprocessing.splitting (module)

 	fklearn.training.calibration (module)

 	fklearn.training.classification (module)

 	fklearn.training.ensemble (module)

 	fklearn.training.imputation (module)

 	fklearn.training.pipeline (module)

 	fklearn.training.regression (module)

 	fklearn.training.transformation (module)

 	
 	fklearn.training.unsupervised (module)

 	fklearn.training.utils (module)

 	fklearn.tuning.model_agnostic_fc (module)

 	fklearn.tuning.parameter_tuners (module)

 	fklearn.tuning.samplers (module)

 	fklearn.tuning.selectors (module)

 	fklearn.tuning.stoppers (module)

 	fklearn.tuning.utils (module)

 	fklearn.types.types (module)

 	fklearn.validation.evaluators (module)

 	fklearn.validation.splitters (module)

 	fklearn.validation.validator (module)

 	floorer (in module fklearn.training.transformation)

 	forward_stability_curve_time_splitter (in module fklearn.validation.splitters)

G

 	
 	generic_sklearn_evaluator() (in module fklearn.validation.evaluators)

 	
 	gp_regression_learner (in module fklearn.training.regression)

 	grid_search_cv (in module fklearn.tuning.parameter_tuners)

H

 	
 	hash_evaluator (in module fklearn.validation.evaluators)

I

 	
 	imputer (in module fklearn.training.imputation)

 	
 	isolation_forest_learner (in module fklearn.training.unsupervised)

 	isotonic_calibration_learner (in module fklearn.training.calibration)

K

 	
 	k_fold_splitter (in module fklearn.validation.splitters)

L

 	
 	label_categorizer (in module fklearn.training.transformation)

 	lgbm_classification_learner (in module fklearn.training.classification)

 	lgbm_regression_learner (in module fklearn.training.regression)

 	
 	linear_regression_learner (in module fklearn.training.regression)

 	logistic_classification_learner (in module fklearn.training.classification)

 	logloss_evaluator (in module fklearn.validation.evaluators)

M

 	
 	make_confounded_data() (in module fklearn.data.datasets)

 	make_tutorial_data() (in module fklearn.data.datasets)

 	
 	mean_prediction_evaluator (in module fklearn.validation.evaluators)

 	missing_warner (in module fklearn.training.transformation)

 	mse_evaluator (in module fklearn.validation.evaluators)

N

 	
 	ndcg_evaluator (in module fklearn.validation.evaluators)

 	
 	nlp_logistic_classification_learner (in module fklearn.training.classification)

 	null_injector (in module fklearn.training.transformation)

O

 	
 	onehot_categorizer (in module fklearn.training.transformation)

 	
 	out_of_time_and_space_splitter (in module fklearn.validation.splitters)

P

 	
 	parallel_validator (in module fklearn.validation.validator)

 	permutation_evaluator (in module fklearn.validation.evaluators)

 	placeholder_imputer (in module fklearn.training.imputation)

 	
 	poor_man_boruta_selection() (in module fklearn.tuning.selectors)

 	pr_auc_evaluator (in module fklearn.validation.evaluators)

 	precision_evaluator (in module fklearn.validation.evaluators)

 	prediction_ranger (in module fklearn.training.transformation)

Q

 	
 	quantile_biner (in module fklearn.training.transformation)

R

 	
 	r2_evaluator (in module fklearn.validation.evaluators)

 	random_search_tuner (in module fklearn.tuning.parameter_tuners)

 	rank_categorical (in module fklearn.training.transformation)

 	rebalance_by_categorical (in module fklearn.preprocessing.rebalancing)

 	rebalance_by_continuous (in module fklearn.preprocessing.rebalancing)

 	
 	recall_evaluator (in module fklearn.validation.evaluators)

 	remove_by_feature_importance (in module fklearn.tuning.samplers)

 	remove_by_feature_shuffling (in module fklearn.tuning.samplers)

 	remove_features_subsets (in module fklearn.tuning.samplers)

 	reverse_time_learning_curve_splitter (in module fklearn.validation.splitters)

 	roc_auc_evaluator (in module fklearn.validation.evaluators)

S

 	
 	seed() (in module fklearn.tuning.parameter_tuners)

 	selector (in module fklearn.training.transformation)

 	space_time_split_dataset (in module fklearn.preprocessing.splitting)

 	spatial_learning_curve_splitter (in module fklearn.validation.splitters)

 	spearman_evaluator (in module fklearn.validation.evaluators)

 	split_evaluator (in module fklearn.validation.evaluators)

 	stability_curve_time_in_space_splitter (in module fklearn.validation.splitters)

 	stability_curve_time_space_splitter (in module fklearn.validation.splitters)

 	
 	stability_curve_time_splitter (in module fklearn.validation.splitters)

 	standard_scaler (in module fklearn.training.transformation)

 	stop_by_iter_num (in module fklearn.tuning.stoppers)

 	stop_by_no_improvement (in module fklearn.tuning.stoppers)

 	stop_by_no_improvement_parallel (in module fklearn.tuning.stoppers)

 	stop_by_num_features (in module fklearn.tuning.stoppers)

 	stop_by_num_features_parallel (in module fklearn.tuning.stoppers)

 	stratified_split_dataset (in module fklearn.preprocessing.splitting)

T

 	
 	target_categorizer (in module fklearn.training.transformation)

 	temporal_split_evaluator (in module fklearn.validation.evaluators)

 	time_and_space_learning_curve_splitter (in module fklearn.validation.splitters)

 	
 	time_learning_curve_splitter (in module fklearn.validation.splitters)

 	time_split_dataset (in module fklearn.preprocessing.splitting)

 	truncate_categorical (in module fklearn.training.transformation)

V

 	
 	validator (in module fklearn.validation.validator)

 	validator_iteration() (in module fklearn.validation.validator)

 	
 	value_mapper (in module fklearn.training.transformation)

 	variance_feature_selection (in module fklearn.tuning.model_agnostic_fc)

X

 	
 	xgb_classification_learner (in module fklearn.training.classification)

 	
 	xgb_octopus_classification_learner (in module fklearn.training.ensemble)

 	xgb_regression_learner (in module fklearn.training.regression)

Causal Inference

[1]:

import numpy as np
import pandas as pd

from fklearn.training.regression import xgb_regression_learner
from fklearn.training.classification import xgb_classification_learner, logistic_classification_learner
from fklearn.training.causal_inference import IPTW_learner
from fklearn.validation.evaluators import r2_evaluator, roc_auc_evaluator
from fklearn.data.datasets import make_confounded_data

from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import seaborn as sns

N=50000
features = ["sex", "age", "severity"]
treatment = ["medication"]

/opt/anaconda/lib/python2.7/site-packages/sklearn/cross_validation.py:41: DeprecationWarning: This module was deprecated in version 0.18 in favor of the model_selection module into which all the refactored classes and functions are moved. Also note that the interface of the new CV iterators are different from that of this module. This module will be removed in 0.20.
 "This module will be removed in 0.20.", DeprecationWarning)

Synthetic Data Model

To better understand counterfactual inference, we will use a synthetic data, for which the generating process is known. More precisely, the data which is generated from the following model

\(Sex \sim \mathcal{B}(0.5)\)

\(Age \sim \operatorname{Gamma}(8, 4)\)

\(Severity \sim \mathbb{1}_{\{age < 30\}} \operatorname{Beta}(1,3) + \mathbb{1}_{\{age \geq 30\}} \operatorname{Beta}(3,1.5)\)

\(Treat \sim \mathcal{B}(-0.8 + 0.33*sex + 1.5*severity)\)

\(Recovery = \operatorname{Poisson}(2+0.5 * sex+0.03 * age+ 1*severity-1 * medication)\)

We can see that the linear factor that multiply the medication is \(-1\). Since this relation is inside a Poisson model, we can say that the expected causal effect of medication on recovery time is \(exp(-1)\approx 0.36\). We can also see that there are lots of confounding in the above model. For instance, Severity directly influences both the probability of treatment and the recovery time directly. The same if true for sex, with the additional complication that sext also influences on
the severity of the daisies. Finally, age directly influences the recovery time and affect treatment only indirectly through influence in severity. Moreover, there are some non trivial data, like the severity, which is a mixture of two Beta distribution.

The function bellow generates such data. It returns a Data Frame for which the treatment is randomly assigned, one DataFrame that simulates a observational dataset with the a above treatment probability. It also returns a third DataFrame, just like the simulated observational one, but with the treatment inverted. This will be the counterfactual dataframe.

[2]:

df_rnd, df_obs, df_cf = make_confounded_data(N)

/opt/anaconda/lib/python2.7/site-packages/pandas/core/computation/check.py:17: UserWarning: The installed version of numexpr 2.4.3 is not supported in pandas and will be not be used
The minimum supported version is 2.4.6

 ver=ver, min_ver=_MIN_NUMEXPR_VERSION), UserWarning)

Lets now see the correlations present in this dataframe. As you can see, all variables are correlated with both recovery and treatment assignment, which is the typical confounding scenario.

[3]:

df_obs.corr()

[3]:

 FKLearn Tutorial:

FKLearn Tutorial:

	FKlearn is nubank’s functional library for Machine Learning (https://github.com/nubank/fklearn)

[image: b1b589abd48945cf8407b8b7c632501b]

	It was created with the idea of scaling machine learning through the company by standardizing model development and implementing an easy interface to allow all users to develop the best practices on Machine Learning

	Currently powering more than 30 models in production

	FKLearn was created having 4 principles that guided it’s development:

[image: 5587209ed44c41bda9cc323374d31190]

Input Analysis

Imports

[1]:

import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
import seaborn as sns
import matplotlib
sns.set_style("whitegrid")
sns.set_palette("husl")

import warnings
warnings.filterwarnings('ignore')

Input Dataset

	This dataset was created with simulated data about users spend behavior on Credit Card

	The model target is the average spend of the next 2 months and we created several features that are related to the target

[3]:

Generate this dataset using the FKLearn Tutorial Dataset.ipynb notebook
df = pd.read_csv("fklearn-tutorial-input-dataset.csv")

[4]:

df['month_date'] = pd.to_datetime(df.month_date)

[5]:

df.head()

[5]:

 This is the notebook used to generate the dataset used on the FKLearn Tutorial.ipynb

This is the notebook used to generate the dataset used on the FKLearn Tutorial.ipynb

	The FKLearn Tutorial notebook was used to introduce FKLearn on Nubank’s Data Science Meetup and the idea was to give an overall idea on how and why you should use FKLearn

[1]:

import pandas as pd
import numpy as np
from matplotlib import pyplot as plt

[2]:

from scipy.stats import truncnorm

def get_truncated_normal(mean=0, sd=1, low=0, upp=10):
 return truncnorm(
 (low - mean) / sd, (upp - mean) / sd, loc=mean, scale=sd)

[3]:

ids = range(0, 10000)
months = range(1, 24)

[4]:

unique_entries = np.array(np.meshgrid(ids, months)).T.reshape(-1, 2)

[5]:

unique_entries.shape

[5]:

(230000, 2)

[6]:

np.power(np.array([months]), 0.1)

[6]:

array([[1. , 1.07177346, 1.11612317, 1.14869835, 1.17461894,
 1.1962312 , 1.21481404, 1.23114441, 1.24573094, 1.25892541,
 1.27098162, 1.28208885, 1.29239222, 1.30200545, 1.31101942,
 1.31950791, 1.32753167, 1.33514136, 1.34237965, 1.34928285,
 1.35588211, 1.36220437, 1.36827308]])

[7]:

X = get_truncated_normal(5000, 2000, 300, 20000)
income_by_id = X.rvs(len(ids))
income_by_id = np.repeat(income_by_id, len(months))
income_wrong_entry = np.random.binomial(1, 1 - 0.05, unique_entries.shape[0]).astype(bool)
income_array = np.where(income_wrong_entry == True, income_by_id.reshape(1, -1), 9999999)

[8]:

income_array.shape

[8]:

(1, 230000)

[9]:

plt.hist(income_by_id, bins = range(0, 20000, 500))

[9]:

(array([8.5100e+02, 2.4150e+03, 3.8180e+03, 5.8880e+03, 9.3610e+03,
 1.2420e+04, 1.6031e+04, 1.9228e+04, 2.1091e+04, 2.3276e+04,
 2.2448e+04, 2.1942e+04, 2.0263e+04, 1.4789e+04, 1.2236e+04,
 9.2230e+03, 5.8420e+03, 3.9100e+03, 2.3230e+03, 1.2880e+03,
 7.3600e+02, 2.7600e+02, 9.2000e+01, 1.8400e+02, 2.3000e+01,
 2.3000e+01, 2.3000e+01, 0.0000e+00, 0.0000e+00, 0.0000e+00,
 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00]),
 array([0, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000,
 4500, 5000, 5500, 6000, 6500, 7000, 7500, 8000, 8500,
 9000, 9500, 10000, 10500, 11000, 11500, 12000, 12500, 13000,
 13500, 14000, 14500, 15000, 15500, 16000, 16500, 17000, 17500,
 18000, 18500, 19000, 19500]),
 <a list of 39 Patch objects>)

[image: ../../../../../../../_images/_build_doctrees_nbsphinx__build_doctrees-readthedocs_nbsphinx_examples_fklearn_overview_dataset_generation_9_1.png]

[10]:

customer_creation_date = []
for m_id in np.random.choice(len(months) * 31, len(ids)):
 customer_creation_date.append(np.datetime64("2017-01-01") + np.timedelta64(int(m_id), 'D'))
customer_creation_date = np.repeat(np.array(customer_creation_date), len(months))

[11]:

phone_branches = ["samsung", "motorola", "iphone", "lg"]
random_phone = np.random.choice(4, len(ids), p=[0.15, 0.3, 0.25, 0.3])
cellphone_branch = [phone_branches[i] for i in random_phone]
cellphone_branch = np.repeat(cellphone_branch, len(months))
phone_factor = [0.7, 0.3, 0.9, 0.45]
cellphone_factor = [phone_factor[i] for i in random_phone]
cellphone_factor = np.repeat(cellphone_factor, len(months))

[12]:

cellphone_factor

[12]:

array([0.45, 0.45, 0.45, ..., 0.3 , 0.3 , 0.3])

[13]:

bureau_missing = np.random.binomial(1, 1 - 0.1, unique_entries.shape[0]).astype(bool)
Y = get_truncated_normal(500, 250, 0, 1000)
bureau_score = Y.rvs(unique_entries.shape[0])
monthly_factor = np.tile(np.power(np.array(months), 0.2), len(ids))
bureau_score = np.where(bureau_missing == True, bureau_score, np.nan) / monthly_factor

[14]:

bureau_score

[14]:

array([395.94580788, 415.29087644, 159.24609131, ..., 433.25966177,
 297.1819245 , nan])

[15]:

plt.hist(bureau_score, bins = range(0, 1000, 25))

[15]:

(array([2219., 2924., 3928., 4948., 6192., 7456., 8735., 10123.,
 11212., 11909., 12934., 13351., 12961., 12877., 12282., 11558.,
 10431., 9236., 8037., 7139., 5836., 4894., 3652., 2821.,
 2063., 1654., 1256., 1029., 817., 572., 480., 375.,
 275., 240., 206., 132., 78., 86., 69.]),
 array([0, 25, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300,
 325, 350, 375, 400, 425, 450, 475, 500, 525, 550, 575, 600, 625,
 650, 675, 700, 725, 750, 775, 800, 825, 850, 875, 900, 925, 950,
 975]),
 <a list of 39 Patch objects>)

[image: ../../../../../../../_images/_build_doctrees_nbsphinx__build_doctrees-readthedocs_nbsphinx_examples_fklearn_overview_dataset_generation_15_1.png]

[16]:

willingness_to_spend = np.repeat(np.random.normal(500, 200, len(ids)), len(months))

[17]:

willingness_to_spend

[17]:

array([933.87350032, 933.87350032, 933.87350032, ..., 238.32311792,
 238.32311792, 238.32311792])

[18]:

plt.hist(willingness_to_spend, bins = range(-1000, 1500, 50))

[18]:

(array([0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
 0.0000e+00, 0.0000e+00, 0.0000e+00, 2.3000e+01, 0.0000e+00,
 2.3000e+01, 4.6000e+01, 2.3000e+02, 4.6000e+02, 6.2100e+02,
 1.1730e+03, 2.4610e+03, 4.1400e+03, 6.0030e+03, 7.9580e+03,
 1.1868e+04, 1.4789e+04, 1.9044e+04, 2.0493e+04, 2.3276e+04,
 2.3184e+04, 2.2379e+04, 1.8860e+04, 1.5571e+04, 1.2167e+04,
 9.5680e+03, 5.9570e+03, 4.3930e+03, 2.2540e+03, 1.4030e+03,
 9.6600e+02, 3.9100e+02, 1.8400e+02, 2.3000e+01, 6.9000e+01,
 0.0000e+00, 2.3000e+01, 0.0000e+00, 0.0000e+00]),
 array([-1000, -950, -900, -850, -800, -750, -700, -650, -600,
 -550, -500, -450, -400, -350, -300, -250, -200, -150,
 -100, -50, 0, 50, 100, 150, 200, 250, 300,
 350, 400, 450, 500, 550, 600, 650, 700, 750,
 800, 850, 900, 950, 1000, 1050, 1100, 1150, 1200,
 1250, 1300, 1350, 1400, 1450]),
 <a list of 49 Patch objects>)

[image: ../../../../../../../_images/_build_doctrees_nbsphinx__build_doctrees-readthedocs_nbsphinx_examples_fklearn_overview_dataset_generation_18_1.png]

[31]:

noise_feature = np.random.normal(1000, 100, unique_entries.shape[0])

[32]:

a = (willingness_to_spend)
a_norm = (a - a.min()) / (a.max() - a.min())
b = (income_array)
b_norm = (b - b.min()) / (b.max() - b.min())
c = cellphone_factor * willingness_to_spend
c_norm = (c - c.min()) / (c.max() - c.min())
d = (np.where(np.isnan(bureau_score), 300.0, bureau_score))
d_norm = (d - d.min()) / (d.max() - d.min())
e = np.random.normal(1, 0.3, unique_entries.shape[0])
W = get_truncated_normal(2000, 100, 0, 50000)
spend = (a_norm + b_norm + c_norm + d_norm) * W.rvs(unique_entries.shape[0])

[21]:

spend

[21]:

array([[6476.47307951, 4740.97909678, 3348.94742391, ..., 2367.47238387,
 4354.480922 , 3508.97334522]])

[22]:

spend.shape

[22]:

(1, 230000)

[23]:

income_array.shape

[23]:

(1, 230000)

[33]:

initial_df = (pd.DataFrame(
 unique_entries, columns=["id", "month"]
).assign(
 income=income_array.T,
 created_at=customer_creation_date.T,
 phone_type=cellphone_branch.T,
 bureau_score=bureau_score.T,
 spend_desire=willingness_to_spend.T,
 random_noise=noise_feature.T,
 monthly_spend=spend.T,
 month_date=lambda df: df.month * 31 + np.datetime64("2017-01-01")
)
.loc[lambda df: df.month_date >= df.created_at])

[34]:

plt.plot(sorted(initial_df.month.unique()), initial_df.groupby("month").agg({"bureau_score": "mean"}))

[34]:

[<matplotlib.lines.Line2D at 0x1a24b54940>]

[image: ../../../../../../../_images/_build_doctrees_nbsphinx__build_doctrees-readthedocs_nbsphinx_examples_fklearn_overview_dataset_generation_25_1.png]

[35]:

initial_df

[35]:

 Training and Evaluating Simple Regression Model

Training and Evaluating Simple Regression Model

[1]:

import numpy as np
import pandas as pd

from matplotlib import pyplot as plt

Generate data

[2]:

import numpy.random as random

random.seed(150)

dates = pd.DataFrame({'score_date': pd.date_range('2016-01-01', '2016-12-31')})
dates['key'] = 1

ids = pd.DataFrame({'id': np.arange(0, 100)})
ids['key'] = 1

data = pd.merge(ids, dates).drop('key', axis=1)

data['x1'] = 23 * random.randn(data.shape[0]) + 500
data['x2'] = 59 * random.randn(data.shape[0]) + 235
data['x3'] = 73 * random.randn(data.shape[0]) + 793 # Noise feature.

data['y'] = 0.37*data['x1'] + 0.97*data['x2'] + 0.32*data['x2']**2 - 5.0*data['id']*0.2 + \
 np.cos(pd.to_datetime(data['score_date']).astype(int)*200)*20.0

nan_idx = np.random.randint(0, data.shape[0], size=100) # Inject nan in x1.
data.loc[nan_idx, 'x1'] = np.nan

nan_idx = np.random.randint(0, data.shape[0], size=100) # Inject nan in x2.
data.loc[nan_idx, 'x2'] = np.nan

[3]:

data.head()

[3]:

 Causal Inference

Causal Inference

[1]:

import numpy as np
import pandas as pd

from fklearn.training.regression import xgb_regression_learner
from fklearn.training.classification import xgb_classification_learner, logistic_classification_learner
from fklearn.training.causal_inference import IPTW_learner
from fklearn.validation.evaluators import r2_evaluator, roc_auc_evaluator
from fklearn.data.datasets import make_confounded_data

from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import seaborn as sns

N=50000
features = ["sex", "age", "severity"]
treatment = ["medication"]

/opt/anaconda/lib/python2.7/site-packages/sklearn/cross_validation.py:41: DeprecationWarning: This module was deprecated in version 0.18 in favor of the model_selection module into which all the refactored classes and functions are moved. Also note that the interface of the new CV iterators are different from that of this module. This module will be removed in 0.20.
 "This module will be removed in 0.20.", DeprecationWarning)

Synthetic Data Model

To better understand counterfactual inference, we will use a synthetic data, for which the generating process is known. More precisely, the data which is generated from the following model

\(Sex \sim \mathcal{B}(0.5)\)

\(Age \sim \operatorname{Gamma}(8, 4)\)

\(Severity \sim \mathbb{1}_{\{age < 30\}} \operatorname{Beta}(1,3) + \mathbb{1}_{\{age \geq 30\}} \operatorname{Beta}(3,1.5)\)

\(Treat \sim \mathcal{B}(-0.8 + 0.33*sex + 1.5*severity)\)

\(Recovery = \operatorname{Poisson}(2+0.5 * sex+0.03 * age+ 1*severity-1 * medication)\)

We can see that the linear factor that multiply the medication is \(-1\). Since this relation is inside a Poisson model, we can say that the expected causal effect of medication on recovery time is \(exp(-1)\approx 0.36\). We can also see that there are lots of confounding in the above model. For instance, Severity directly influences both the probability of treatment and the recovery time directly. The same if true for sex, with the additional complication that sext also influences on
the severity of the daisies. Finally, age directly influences the recovery time and affect treatment only indirectly through influence in severity. Moreover, there are some non trivial data, like the severity, which is a mixture of two Beta distribution.

The function bellow generates such data. It returns a Data Frame for which the treatment is randomly assigned, one DataFrame that simulates a observational dataset with the a above treatment probability. It also returns a third DataFrame, just like the simulated observational one, but with the treatment inverted. This will be the counterfactual dataframe.

[2]:

df_rnd, df_obs, df_cf = make_confounded_data(N)

/opt/anaconda/lib/python2.7/site-packages/pandas/core/computation/check.py:17: UserWarning: The installed version of numexpr 2.4.3 is not supported in pandas and will be not be used
The minimum supported version is 2.4.6

 ver=ver, min_ver=_MIN_NUMEXPR_VERSION), UserWarning)

Lets now see the correlations present in this dataframe. As you can see, all variables are correlated with both recovery and treatment assignment, which is the typical confounding scenario.

[3]:

df_obs.corr()

[3]:

 FKLearn Tutorial:

FKLearn Tutorial:

	FKlearn is nubank’s functional library for Machine Learning (https://github.com/nubank/fklearn)

[image: a70ea4b5b42c452b86976745d453132c]

	It was created with the idea of scaling machine learning through the company by standardizing model development and implementing an easy interface to allow all users to develop the best practices on Machine Learning

	Currently powering more than 30 models in production

	FKLearn was created having 4 principles that guided it’s development:

[image: 6047cea0dde44e778cbc3ef0f418dd0e]

Input Analysis

Imports

[1]:

import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
import seaborn as sns
import matplotlib
sns.set_style("whitegrid")
sns.set_palette("husl")

import warnings
warnings.filterwarnings('ignore')

Input Dataset

	This dataset was created with simulated data about users spend behavior on Credit Card

	The model target is the average spend of the next 2 months and we created several features that are related to the target

[3]:

Generate this dataset using the FKLearn Tutorial Dataset.ipynb notebook
df = pd.read_csv("fklearn-tutorial-input-dataset.csv")

[4]:

df['month_date'] = pd.to_datetime(df.month_date)

[5]:

df.head()

[5]:

 This is the notebook used to generate the dataset used on the FKLearn Tutorial.ipynb

This is the notebook used to generate the dataset used on the FKLearn Tutorial.ipynb

	The FKLearn Tutorial notebook was used to introduce FKLearn on Nubank’s Data Science Meetup and the idea was to give an overall idea on how and why you should use FKLearn

[1]:

import pandas as pd
import numpy as np
from matplotlib import pyplot as plt

[2]:

from scipy.stats import truncnorm

def get_truncated_normal(mean=0, sd=1, low=0, upp=10):
 return truncnorm(
 (low - mean) / sd, (upp - mean) / sd, loc=mean, scale=sd)

[3]:

ids = range(0, 10000)
months = range(1, 24)

[4]:

unique_entries = np.array(np.meshgrid(ids, months)).T.reshape(-1, 2)

[5]:

unique_entries.shape

[5]:

(230000, 2)

[6]:

np.power(np.array([months]), 0.1)

[6]:

array([[1. , 1.07177346, 1.11612317, 1.14869835, 1.17461894,
 1.1962312 , 1.21481404, 1.23114441, 1.24573094, 1.25892541,
 1.27098162, 1.28208885, 1.29239222, 1.30200545, 1.31101942,
 1.31950791, 1.32753167, 1.33514136, 1.34237965, 1.34928285,
 1.35588211, 1.36220437, 1.36827308]])

[7]:

X = get_truncated_normal(5000, 2000, 300, 20000)
income_by_id = X.rvs(len(ids))
income_by_id = np.repeat(income_by_id, len(months))
income_wrong_entry = np.random.binomial(1, 1 - 0.05, unique_entries.shape[0]).astype(bool)
income_array = np.where(income_wrong_entry == True, income_by_id.reshape(1, -1), 9999999)

[8]:

income_array.shape

[8]:

(1, 230000)

[9]:

plt.hist(income_by_id, bins = range(0, 20000, 500))

[9]:

(array([8.5100e+02, 2.4150e+03, 3.8180e+03, 5.8880e+03, 9.3610e+03,
 1.2420e+04, 1.6031e+04, 1.9228e+04, 2.1091e+04, 2.3276e+04,
 2.2448e+04, 2.1942e+04, 2.0263e+04, 1.4789e+04, 1.2236e+04,
 9.2230e+03, 5.8420e+03, 3.9100e+03, 2.3230e+03, 1.2880e+03,
 7.3600e+02, 2.7600e+02, 9.2000e+01, 1.8400e+02, 2.3000e+01,
 2.3000e+01, 2.3000e+01, 0.0000e+00, 0.0000e+00, 0.0000e+00,
 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00]),
 array([0, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000,
 4500, 5000, 5500, 6000, 6500, 7000, 7500, 8000, 8500,
 9000, 9500, 10000, 10500, 11000, 11500, 12000, 12500, 13000,
 13500, 14000, 14500, 15000, 15500, 16000, 16500, 17000, 17500,
 18000, 18500, 19000, 19500]),
 <a list of 39 Patch objects>)

[image: ../../../../../../../../../../_images/_build_doctrees_nbsphinx__build_doctrees-readthedocssinglehtmllocalmedia_nbsphinx__build_doctrees-readthedocs_nbsphinx_examples_fklearn_overview_dataset_generation_9_1.png]

[10]:

customer_creation_date = []
for m_id in np.random.choice(len(months) * 31, len(ids)):
 customer_creation_date.append(np.datetime64("2017-01-01") + np.timedelta64(int(m_id), 'D'))
customer_creation_date = np.repeat(np.array(customer_creation_date), len(months))

[11]:

phone_branches = ["samsung", "motorola", "iphone", "lg"]
random_phone = np.random.choice(4, len(ids), p=[0.15, 0.3, 0.25, 0.3])
cellphone_branch = [phone_branches[i] for i in random_phone]
cellphone_branch = np.repeat(cellphone_branch, len(months))
phone_factor = [0.7, 0.3, 0.9, 0.45]
cellphone_factor = [phone_factor[i] for i in random_phone]
cellphone_factor = np.repeat(cellphone_factor, len(months))

[12]:

cellphone_factor

[12]:

array([0.45, 0.45, 0.45, ..., 0.3 , 0.3 , 0.3])

[13]:

bureau_missing = np.random.binomial(1, 1 - 0.1, unique_entries.shape[0]).astype(bool)
Y = get_truncated_normal(500, 250, 0, 1000)
bureau_score = Y.rvs(unique_entries.shape[0])
monthly_factor = np.tile(np.power(np.array(months), 0.2), len(ids))
bureau_score = np.where(bureau_missing == True, bureau_score, np.nan) / monthly_factor

[14]:

bureau_score

[14]:

array([395.94580788, 415.29087644, 159.24609131, ..., 433.25966177,
 297.1819245 , nan])

[15]:

plt.hist(bureau_score, bins = range(0, 1000, 25))

[15]:

(array([2219., 2924., 3928., 4948., 6192., 7456., 8735., 10123.,
 11212., 11909., 12934., 13351., 12961., 12877., 12282., 11558.,
 10431., 9236., 8037., 7139., 5836., 4894., 3652., 2821.,
 2063., 1654., 1256., 1029., 817., 572., 480., 375.,
 275., 240., 206., 132., 78., 86., 69.]),
 array([0, 25, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300,
 325, 350, 375, 400, 425, 450, 475, 500, 525, 550, 575, 600, 625,
 650, 675, 700, 725, 750, 775, 800, 825, 850, 875, 900, 925, 950,
 975]),
 <a list of 39 Patch objects>)

[image: ../../../../../../../../../../_images/_build_doctrees_nbsphinx__build_doctrees-readthedocssinglehtmllocalmedia_nbsphinx__build_doctrees-readthedocs_nbsphinx_examples_fklearn_overview_dataset_generation_15_1.png]

[16]:

willingness_to_spend = np.repeat(np.random.normal(500, 200, len(ids)), len(months))

[17]:

willingness_to_spend

[17]:

array([933.87350032, 933.87350032, 933.87350032, ..., 238.32311792,
 238.32311792, 238.32311792])

[18]:

plt.hist(willingness_to_spend, bins = range(-1000, 1500, 50))

[18]:

(array([0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
 0.0000e+00, 0.0000e+00, 0.0000e+00, 2.3000e+01, 0.0000e+00,
 2.3000e+01, 4.6000e+01, 2.3000e+02, 4.6000e+02, 6.2100e+02,
 1.1730e+03, 2.4610e+03, 4.1400e+03, 6.0030e+03, 7.9580e+03,
 1.1868e+04, 1.4789e+04, 1.9044e+04, 2.0493e+04, 2.3276e+04,
 2.3184e+04, 2.2379e+04, 1.8860e+04, 1.5571e+04, 1.2167e+04,
 9.5680e+03, 5.9570e+03, 4.3930e+03, 2.2540e+03, 1.4030e+03,
 9.6600e+02, 3.9100e+02, 1.8400e+02, 2.3000e+01, 6.9000e+01,
 0.0000e+00, 2.3000e+01, 0.0000e+00, 0.0000e+00]),
 array([-1000, -950, -900, -850, -800, -750, -700, -650, -600,
 -550, -500, -450, -400, -350, -300, -250, -200, -150,
 -100, -50, 0, 50, 100, 150, 200, 250, 300,
 350, 400, 450, 500, 550, 600, 650, 700, 750,
 800, 850, 900, 950, 1000, 1050, 1100, 1150, 1200,
 1250, 1300, 1350, 1400, 1450]),
 <a list of 49 Patch objects>)

[image: ../../../../../../../../../../_images/_build_doctrees_nbsphinx__build_doctrees-readthedocssinglehtmllocalmedia_nbsphinx__build_doctrees-readthedocs_nbsphinx_examples_fklearn_overview_dataset_generation_18_1.png]

[31]:

noise_feature = np.random.normal(1000, 100, unique_entries.shape[0])

[32]:

a = (willingness_to_spend)
a_norm = (a - a.min()) / (a.max() - a.min())
b = (income_array)
b_norm = (b - b.min()) / (b.max() - b.min())
c = cellphone_factor * willingness_to_spend
c_norm = (c - c.min()) / (c.max() - c.min())
d = (np.where(np.isnan(bureau_score), 300.0, bureau_score))
d_norm = (d - d.min()) / (d.max() - d.min())
e = np.random.normal(1, 0.3, unique_entries.shape[0])
W = get_truncated_normal(2000, 100, 0, 50000)
spend = (a_norm + b_norm + c_norm + d_norm) * W.rvs(unique_entries.shape[0])

[21]:

spend

[21]:

array([[6476.47307951, 4740.97909678, 3348.94742391, ..., 2367.47238387,
 4354.480922 , 3508.97334522]])

[22]:

spend.shape

[22]:

(1, 230000)

[23]:

income_array.shape

[23]:

(1, 230000)

[33]:

initial_df = (pd.DataFrame(
 unique_entries, columns=["id", "month"]
).assign(
 income=income_array.T,
 created_at=customer_creation_date.T,
 phone_type=cellphone_branch.T,
 bureau_score=bureau_score.T,
 spend_desire=willingness_to_spend.T,
 random_noise=noise_feature.T,
 monthly_spend=spend.T,
 month_date=lambda df: df.month * 31 + np.datetime64("2017-01-01")
)
.loc[lambda df: df.month_date >= df.created_at])

[34]:

plt.plot(sorted(initial_df.month.unique()), initial_df.groupby("month").agg({"bureau_score": "mean"}))

[34]:

[<matplotlib.lines.Line2D at 0x1a24b54940>]

[image: ../../../../../../../../../../_images/_build_doctrees_nbsphinx__build_doctrees-readthedocssinglehtmllocalmedia_nbsphinx__build_doctrees-readthedocs_nbsphinx_examples_fklearn_overview_dataset_generation_25_1.png]

[35]:

initial_df

[35]:

 Training and Evaluating Simple Regression Model

Training and Evaluating Simple Regression Model

[1]:

import numpy as np
import pandas as pd

from matplotlib import pyplot as plt

Generate data

[2]:

import numpy.random as random

random.seed(150)

dates = pd.DataFrame({'score_date': pd.date_range('2016-01-01', '2016-12-31')})
dates['key'] = 1

ids = pd.DataFrame({'id': np.arange(0, 100)})
ids['key'] = 1

data = pd.merge(ids, dates).drop('key', axis=1)

data['x1'] = 23 * random.randn(data.shape[0]) + 500
data['x2'] = 59 * random.randn(data.shape[0]) + 235
data['x3'] = 73 * random.randn(data.shape[0]) + 793 # Noise feature.

data['y'] = 0.37*data['x1'] + 0.97*data['x2'] + 0.32*data['x2']**2 - 5.0*data['id']*0.2 + \
 np.cos(pd.to_datetime(data['score_date']).astype(int)*200)*20.0

nan_idx = np.random.randint(0, data.shape[0], size=100) # Inject nan in x1.
data.loc[nan_idx, 'x1'] = np.nan

nan_idx = np.random.randint(0, data.shape[0], size=100) # Inject nan in x2.
data.loc[nan_idx, 'x2'] = np.nan

[3]:

data.head()

[3]:

 Causal Inference

Causal Inference

[1]:

import numpy as np
import pandas as pd

from fklearn.training.regression import xgb_regression_learner
from fklearn.training.classification import xgb_classification_learner, logistic_classification_learner
from fklearn.training.causal_inference import IPTW_learner
from fklearn.validation.evaluators import r2_evaluator, roc_auc_evaluator
from fklearn.data.datasets import make_confounded_data

from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import seaborn as sns

N=50000
features = ["sex", "age", "severity"]
treatment = ["medication"]

/opt/anaconda/lib/python2.7/site-packages/sklearn/cross_validation.py:41: DeprecationWarning: This module was deprecated in version 0.18 in favor of the model_selection module into which all the refactored classes and functions are moved. Also note that the interface of the new CV iterators are different from that of this module. This module will be removed in 0.20.
 "This module will be removed in 0.20.", DeprecationWarning)

Synthetic Data Model

To better understand counterfactual inference, we will use a synthetic data, for which the generating process is known. More precisely, the data which is generated from the following model

\(Sex \sim \mathcal{B}(0.5)\)

\(Age \sim \operatorname{Gamma}(8, 4)\)

\(Severity \sim \mathbb{1}_{\{age < 30\}} \opera